当前位置: X-MOL 学术J. Water Chem. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphite Furnace Atomic Absorption Spectrometry Determination of Trace amounts of Nickel in Water Samples after Homogeneous Liquid-Liquid Microextraction via Flotation Assistance
Journal of Water Chemistry and Technology ( IF 0.5 ) Pub Date : 2021-06-08 , DOI: 10.3103/s1063455x21020119
Mohammad Rezaee , Faezeh Khalilian , Hossein Khodaverdi , Mohammad Reza Pourjavid

Abstract

The determination of low levels of nickel has become increasingly very important in environmental chemistry since its negative role in the human life. It is generally impossible to determine trace nickel in environmental samples directly because of interfering species in the surrounding matrix, or the concentration of the analyte being below the detection limit of the instrument. So preconcentration and separation techniques are still necessary. In this work, an efficient microextraction method was applied to the separation and preconcentration of Ni(II) namely homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA). Ni(II) was complexed with 1-(2-pyridylazo)-2-naphthol (PAN) and was extracted to microvolume toluene phase. In this research, a special extraction cell was designed to facilitate collection of the low-density solvent extraction. The enriched analyte in the floated organic phase was determined by graphite furnace atomic absorption spectrometry (GFAAS). The parameters affecting the extraction efficiency of the proposed method such as the type and volume of extraction and homogeneous solvents, pH, extraction time, the chelating agent amount, and ionic strength were studied and optimized. Under optimum conditions, the calibration graph was linear in the range of 1.0–500 μg/L with a detection limit of 0.5 μg/L. The correlation coefficient was 0.9991. The relative standard deviation for seven replicate measurements of nickel was 7.6%. The relative recoveries in tap and well waters at the concentration level of 50 μg/L of Ni2+ were 92.8 and 91.6%, respectively. The proposed method was successfully applied in the analysis of different water samples and good spiked recoveries were obtained. HLLME-FA combined with GFAAS is a fast, simple and efficient method for the determination of Ni(II) in different water samples.



中文翻译:

石墨炉原子吸收光谱法通过浮选辅助测定均相液-液微萃取后水样中的痕量镍

摘要

由于镍对人类生活的负面作用,低含量镍的测定在环境化学中变得越来越重要。由于周围基质中的干扰物质或分析物的浓度低于仪器的检测限,通常无法直接测定环境样品中的痕量镍。所以预浓缩和分离技术仍然是必要的。在这项工作中,一种有效的微萃取方法被应用于 Ni(II) 的分离和预浓缩,即通过浮选辅助 (HLLME-FA) 的均相液-液微萃取。Ni(II) 与 1-(2-pyridylazo)-2-naphthol (PAN) 络合,并被萃取到微量甲苯相中。在这项研究中,一个特殊的萃取池被设计用来促进低密度溶剂萃取物的收集。通过石墨炉原子吸收光谱法 (GFAAS) 测定漂浮的有机相中的富集分析物。对影响所提方法提取效率的参数,如提取类型和体积、均相溶剂、pH、提取时间、螯合剂用量和离子强度等参数进行了研究和优化。在最佳条件下,校准曲线在 1.0–500 μg/L 范围内呈线性,检出限为 0.5 μg/L。相关系数为0.9991。镍七次重复测量的相对标准偏差为 7.6%。自来水和井水中 Ni 浓度为 50 μg/L 时的相对回收率 通过石墨炉原子吸收光谱法 (GFAAS) 测定漂浮的有机相中的富集分析物。对影响所提方法提取效率的参数,如提取类型和体积、均相溶剂、pH、提取时间、螯合剂用量和离子强度等参数进行了研究和优化。在最佳条件下,校准曲线在 1.0–500 μg/L 范围内呈线性,检出限为 0.5 μg/L。相关系数为0.9991。镍七次重复测量的相对标准偏差为 7.6%。自来水和井水中 Ni 浓度为 50 μg/L 时的相对回收率 通过石墨炉原子吸收光谱法 (GFAAS) 测定漂浮的有机相中的富集分析物。对影响所提方法提取效率的参数,如提取类型和体积、均相溶剂、pH、提取时间、螯合剂用量和离子强度等参数进行了研究和优化。在最佳条件下,校准曲线在 1.0–500 μg/L 范围内呈线性,检出限为 0.5 μg/L。相关系数为0.9991。镍七次重复测量的相对标准偏差为 7.6%。自来水和井水中 Ni 浓度为 50 μg/L 时的相对回收率 对影响所提方法提取效率的参数,如提取类型和体积、均相溶剂、pH、提取时间、螯合剂用量和离子强度等参数进行了研究和优化。在最佳条件下,校准曲线在 1.0–500 μg/L 范围内呈线性,检出限为 0.5 μg/L。相关系数为0.9991。镍七次重复测量的相对标准偏差为 7.6%。自来水和井水中 Ni 浓度为 50 μg/L 时的相对回收率 对影响所提方法提取效率的参数,如提取类型和体积、均相溶剂、pH、提取时间、螯合剂用量和离子强度等参数进行了研究和优化。在最佳条件下,校准曲线在 1.0–500 μg/L 范围内呈线性,检出限为 0.5 μg/L。相关系数为0.9991。镍七次重复测量的相对标准偏差为 7.6%。自来水和井水中 Ni 浓度为 50 μg/L 时的相对回收率 0–500 μg/L,检测限为 0.5 μg/L。相关系数为0.9991。镍七次重复测量的相对标准偏差为 7.6%。自来水和井水中 Ni 浓度为 50 μg/L 时的相对回收率 0–500 μg/L,检测限为 0.5 μg/L。相关系数为0.9991。镍七次重复测量的相对标准偏差为 7.6%。自来水和井水中 Ni 浓度为 50 μg/L 时的相对回收率2+分别为 92.8% 和 91.6%。该方法已成功应用于不同水样的分析,并获得了良好的加标回收率。HLLME-FA 结合 GFAAS 是一种快速、简单、高效的方法,用于测定不同水样中的 Ni(II)。

更新日期:2021-06-08
down
wechat
bug