当前位置: X-MOL 学术Def. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of carbide ceramic reinforcements in improving tribological properties of A333 graded hybrid composites
Defence Technology ( IF 5.0 ) Pub Date : 2021-06-08 , DOI: 10.1016/j.dt.2021.06.005
Manu Sam , N. Radhika

Aluminium hybrid functionally graded metal matrix composites (FGMMCs), meet growing demands for supreme tribo-mechanical performance in automotive and aviation industry. This research experimentally compares the influence of carbide ceramics (B4C, SiC, TiC) as reinforcements, in improving reciprocating tribology performance and mechanical strength of A333 hybrid composites against alloy. Hollow cylindrical samples of A333/6 wt%B4C/4 wt%TiC and A333/6 wt%B4C/4 wt%SiC hybrid FGMMCs were developed using horizontal centrifugal casting. Metallography analysis on both composites revealed increasing ceramic gradient distribution towards outer composite wall. Particle rich zone of A333/B4C/SiC hybrid FGMMC showed maximum micro-hardness (198.9 HV) and tensile strength (267.9 MPa). Elemental mapping confirmed effective distribution of ceramics and detected elemental composition of both composites. Particle rich layer of A333/B4C/SiC hybrid FGMMC exhibited improved wear resistance in comparison with all three layers of A333/B4C/TiC hybrid FGMMC and alloy. Third-body abrasion and tribo-chemical wear were the predominant mechanisms revealed for both composites during worn surface analysis.



中文翻译:

碳化物陶瓷增强材料对提高 A333 分级混合复合材料摩擦学性能的影响

铝混合功能梯度金属基复合材料 (FGMMC) 可满足汽车和航空工业对卓越摩擦机械性能不断增长的需求。本研究通过实验比较了碳化物陶瓷(B 4 C、SiC、TiC)作为增强材料在提高 A333 混合复合材料对合金的往复摩擦学性能和机械强度方面的影响。使用水平离心铸造开发了 A333/6 wt%B 4 C/4 wt%TiC 和 A333/6 wt%B 4 C/4 wt%SiC 混合 FGMMC 的空心圆柱形样品。对两种复合材料的金相分析表明,陶瓷梯度分布向复合材料外壁增加。A333/B 4富粒子区C/SiC 混合 FGMMC 显示出最大的显微硬度 (198.9 HV) 和抗拉强度 (267.9 MPa)。元素映射证实了陶瓷的有效分布并检测了两种复合材料的元素组成。与 A333/B 4 C/TiC 混合 FGMMC 和合金的所有三层相比,A333/B 4 C/SiC 混合 FGMMC的颗粒丰富层表现出更好的耐磨性。第三体磨损和摩擦化学磨损是磨损表面分析中两种复合材料的主要机制。

更新日期:2021-06-08
down
wechat
bug