当前位置: X-MOL 学术Intermetallics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High fatigue endurance limit of a metastable Ti-based metallic glass composite with martensitic transformation
Intermetallics ( IF 4.3 ) Pub Date : 2021-06-08 , DOI: 10.1016/j.intermet.2021.107253
X.D. Wang , S.L. Song , D.M. Liu , Z.W. Zhu , H.F. Zhang , X.C. Ren

Introducing the dendrite phase is an effective solution to overcome the low fatigue resistance of metallic glass (MG). In present study, we examined the four-point bending fatigue behavior of a new Ti50.32Zr33.92Cu4.56Ni2.12Be9.08 metallic glass composite (MGC) containing metastable dendrites. The stress-life (S–N) test and various characterization techniques including X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were carried out. The fatigue endurance limit, defined as the maximum stress amplitude to which the sample is subjected for 107 cycles without failure, was measured to be ~360 MPa in current MGC. Just compared to the four-point bending fatigue data in previously reported MGCs, the fatigue limit of current MGC is highest. Such excellent fatigue property results from the coupled effect of two aspects on the shear banding and fatigue damage behaviors, i.e., one is the fine separation between the dendrite phases and the other is the martensitic transformation of the metastable dendrites. These findings may improve the understanding on the fatigue mechanisms and provide a promising way for designing the MGs or MGCs with better fatigue performance.



中文翻译:

具有马氏体相变的亚稳态钛基金属玻璃复合材料的高疲劳耐久极限

引入枝晶相是克服金属玻璃(MG)低疲劳强度的有效方法。在本研究中,我们研究了含有亚稳态枝晶的新型 Ti 50.32 Zr 33.92 Cu 4.56 Ni 2.12 Be 9.08金属玻璃复合材料 (MGC)的四点弯曲疲劳行为。进行了应力寿命 ( S-N ) 测试和各种表征技术,包括 X 射线衍射仪 (XRD)、扫描电子显微镜 (SEM) 和透射电子显微镜 (TEM)。疲劳耐久极限,定义为样品承受 10 7 次的最大应力幅值在目前的 MGC 中,无故障循环的测量值为 ~360 MPa。仅与之前报道的 MGC 中的四点弯曲疲劳数据相比,当前 MGC 的疲劳极限是最高的。如此优异的疲劳性能源于两个方面对剪切带和疲劳损伤行为的耦合作用,即一是枝晶相间的精细分离,二是亚稳态枝晶的马氏体转变。这些发现可能会提高对疲劳机制的理解,并为设计具有更好疲劳性能的 MGs 或 MGCs 提供一种有前途的方法。

更新日期:2021-06-08
down
wechat
bug