当前位置: X-MOL 学术Mechatronics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design, modeling and control of a miniature bio-inspired amphibious spherical robot
Mechatronics ( IF 3.1 ) Pub Date : 2021-06-07 , DOI: 10.1016/j.mechatronics.2021.102574
Huiming Xing , Liwei Shi , Xihuan Hou , Yu Liu , Yao Hu , Debin Xia , Zan Li , Shuxiang Guo

It is a huge challenge for an amphibious robot with a high locomotory performance to locomote in amphibious environments, including crawling on rough terrains, maneuvering underwater, and launching and landing motion between land and water. To deal with such a challenge, a miniature bio-inspired Amphibious Spherical Robot (ASRobot) with a Legged, Multi-vectored Water-jet Composite Driving Mechanism (LMWCDM) has been designed. In this paper, locomotory performance of the robot in amphibious field environments is studied. First, a simplified kinematic model was built to study crawling gaits, and with an online adjustment mechanism, the gaits were adjusted, enabling the robot to climb up slopes more stably. Then, using a dynamic underwater model, a real-time dynamic thrust vectoring allocation strategy is proposed to generate the water-jet thrust and joint angles using desired forces and torques computed by four parallel PID algorithms. Finally, a set of experiments were carried out to evaluate the performance of on land locomotion and underwater locomotion. Further, outdoor locomotion experiments including crawling on various terrains, launching and landing motion, were conducted in field environments. The results demonstrate that the robot prototype possesses the high locomotory performance which endows its wide application of disaster rescue, reconnaissance and resource exploration in amphibious environments.



中文翻译:

微型仿生两栖球形机器人的设计、建模与控制

对于具有高运动性能的水陆两栖机器人来说,在崎岖地形爬行、水下机动、陆水间起降运动等两栖环境中的移动是一个巨大的挑战。为了应对这样的挑战,设计了一种微型仿生两栖球形机器人(ASRobot),具有腿式多矢量水射流复合驱动机构(LMWCDM)。本文研究了机器人在两栖野外环境中的运动性能。首先,建立了一个简化的运动学模型来研究爬行步态,并通过在线调整机制来调整步态,使机器人能够更稳定地爬上斜坡。然后,使用动态水下模型,提出了一种实时动态推力矢量分配策略,以使用由四个并行 PID 算法计算的所需力和扭矩来生成水射流推力和关节角度。最后,进行了一组实验来评估陆地运动和水下运动的性能。此外,在野外环境中进行了包括在各种地形上爬行、发射和着陆运动在内的户外运动实验。结果表明,该机器人原型具有较高的运动性能,使其在两栖环境中的灾难救援、侦察和资源勘探中具有广泛的应用。进行了一组实验来评估陆地运动和水下运动的性能。此外,在野外环境中进行了包括在各种地形上爬行、发射和着陆运动在内的户外运动实验。结果表明,该机器人原型具有较高的运动性能,使其在两栖环境中的灾难救援、侦察和资源勘探中具有广泛的应用。进行了一组实验来评估陆地运动和水下运动的性能。此外,在野外环境中进行了包括在各种地形上爬行、发射和着陆运动在内的户外运动实验。结果表明,该机器人原型具有较高的运动性能,使其在两栖环境中的灾难救援、侦察和资源勘探中具有广泛的应用。

更新日期:2021-06-07
down
wechat
bug