当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum tomography of an entangled three-qubit state in silicon
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2021-06-07 , DOI: 10.1038/s41565-021-00925-0
Kenta Takeda 1 , Akito Noiri 1 , Takashi Nakajima 1 , Jun Yoneda 1, 2 , Takashi Kobayashi 1 , Seigo Tarucha 1
Affiliation  

Quantum entanglement is a fundamental property of coherent quantum states and an essential resource for quantum computing1. In large-scale quantum systems, the error accumulation requires concepts for quantum error correction. A first step toward error correction is the creation of genuinely multipartite entanglement, which has served as a performance benchmark for quantum computing platforms such as superconducting circuits2,3, trapped ions4 and nitrogen-vacancy centres in diamond5. Among the candidates for large-scale quantum computing devices, silicon-based spin qubits offer an outstanding nanofabrication capability for scaling-up. Recent studies demonstrated improved coherence times6,7,8, high-fidelity all-electrical control9,10,11,12,13, high-temperature operation14,15 and quantum entanglement of two spin qubits9,11,12. Here we generated a three-qubit Greenberger–Horne–Zeilinger state using a low-disorder, fully controllable array of three spin qubits in silicon. We performed quantum state tomography16 and obtained a state fidelity of 88.0%. The measurements witness a genuine Greenberger–Horne–Zeilinger class quantum entanglement that cannot be separated into any biseparable state. Our results showcase the potential of silicon-based spin qubit platforms for multiqubit quantum algorithms.



中文翻译:

硅中纠缠三量子位态的量子断层扫描

量子纠缠是相干量子态的基本属性,也是量子计算的重要资源1。在大规模量子系统中,误差累积需要量子纠错的概念。纠错的第一步是创建真正的多方纠缠,它已作为量子计算平台的性能基准,例如超导电路2,3、捕获的离子4和金刚石中的氮空位中心5。在大规模量子计算设备的候选者中,基于硅的自旋量子比特提供了出色的放大纳米加工能力。最近的研究表明,一致性时间有所改善6,7,8, 高保真全电控制9,10,11,12,13,高温操作14,15和两个自旋量子比特的量子纠缠9,11,12。在这里,我们使用硅中三个自旋量子比特的低无序、完全可控阵列生成了一个三量子比特 Greenberger-Horne-Zeilinger 状态。我们进行了量子态断层扫描16并获得了 88.0% 的状态保真度。测量见证了真正的 Greenberger-Horne-Zeilinger 级量子纠缠,它不能被分离成任何可分离的状态。我们的结果展示了基于硅的自旋量子位平台在多量子位量子算法中的潜力。

更新日期:2021-06-07
down
wechat
bug