当前位置: X-MOL 学术Alex. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magneto-mixed convection in a lid driven partially heated cavity equipped with nanofluid and rotating flat plate
Alexandria Engineering Journal ( IF 6.8 ) Pub Date : 2021-06-06 , DOI: 10.1016/j.aej.2021.05.003
Mohammad Mokaddes Ali , Rowsanara Akhter , Md. Abdul Alim

In this study, mixed convection in a nanofluid filled cavity induced by thermal buoyancy force, moving wall and rotating flat plate subjected to external magnetic field is numerically investigated. The cavity is partially heated from its bottom wall and cooled from top wall moving with constant velocity in ±x direction and other walls are kept adiabatic. A counter-clockwise rotating flat plate is placed at the centre of the cavity. The cavity is permeated by a transverse magnetic field. Conservation equations are simulated through implementing finite element method. Numerical results are presented using streamlines, isotherms and bar charts to explore the effects of physical parameters on the flow and temperature fields. It is found that flow and thermal fields are impressively affected with the variations in length and speed of rotating flat plate. Besides, higher length and rotational speed of the plate causes maximum amount of heat transfer. Best heat transfer is ensured while the direction of rotating plate is same as the direction of lid wall. Moreover, optimal heat transfer performance is obtained up to 5% nanoparticles concentration which is 123.02% more than base fluid. Higher magnetic field strength attenuates the fluid motion and hence heat transfer rate significantly.



中文翻译:

配备纳米流体和旋转平板的盖子驱动部分加热腔中的磁混合对流

在这项研究中,数值研究了由热浮力、移动壁和旋转平板在外部磁场作用下引起的纳米流体填充腔中的混合对流。腔体从底壁部分受热,从顶壁沿±x 方向匀速运动而冷却,其他壁保持绝热。一个逆时针旋转的平板放置在型腔的中心。空腔被横向磁场渗透。通过实施有限元方法来模拟守恒方程。使用流线、等温线和条形图显示数值结果,以探索物理参数对流场和温度场的影响。发现流场和热场受到旋转平板长度和速度变化的影响。此外,板的长度和转速越高,传热量越大。旋转板的方向与盖壁的方向相同,保证了最佳的传热。此外,当纳米颗粒浓度达到 5% 时,可获得最佳传热性能,比基液高 123.02%。较高的磁场强度会减弱流体运动,从而显着减弱传热速率。纳米颗粒浓度高达 5% 时可获得最佳传热性能,比基液高 123.02%。较高的磁场强度会减弱流体运动,从而显着减弱传热速率。纳米颗粒浓度高达 5% 时可获得最佳传热性能,比基液高 123.02%。较高的磁场强度会减弱流体运动,从而显着减弱传热速率。

更新日期:2021-07-30
down
wechat
bug