当前位置: X-MOL 学术Mechatronics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Decoupled error dynamics design for discrete-time sliding mode control in industrial servo systems under control input saturation and disturbance
Mechatronics ( IF 3.3 ) Pub Date : 2021-06-06 , DOI: 10.1016/j.mechatronics.2021.102581
Ji-Seok Han , Tae-Ho Oh , Young-Seok Kim , Hyun-Taek Lim , Dae-Young Yang , Sang-Hoon Lee , Dong-Il “Dan” Cho

This paper presents a design framework for the discrete-time Sliding mode control with Decoupled disturbance compensator and Auxiliary state (SDA) method in industrial servo applications. In particular, the discrete-time SDA method is formulated to provide an excellent tracking performance even in the presence of control input saturation and disturbance. Moreover, it preserves the separation principle of the sliding mode dynamics and the disturbance estimation error dynamics of the original discrete-time Sliding Mode Control (SMC) with Decoupled Disturbance Compensator (DDC) method. However, it can be problematic due to the unpredictable transients in the error states under control input saturation. This paper investigates the error dynamics of discrete-time SDA after a transition from a saturated region to an unsaturated region, which is called the decoupled error dynamics. The decoupled error dynamics can be designed by shaping a “hidden” sliding manifold which is activated only after the transition. Based on the analysis, a systematical design methodology for the decoupled error dynamics is proposed, which prevents the recurrence of the control input saturation and provides fast convergence of the error states. The effectiveness of the proposed design methodology is shown experimentally using an industrial linear motor system.



中文翻译:

控制输入​​饱和扰动下工业伺服系统离散时间滑模控制的解耦误差动力学设计

本文提出了离散时间一设计框架š利顶模式控制与d ecoupled扰动补偿器和一个在工业伺服应用uxiliary状态(SDA)方法。特别是,离散时间 SDA 方法被制定为即使在存在控制输入饱和和干扰的情况下也能提供出色的跟踪性能。此外,它保留了滑模动力学和原始离散时间的扰动估计误差动力学的分离原理š利顶中号ODE Ç ONTROL(SMC)与d ecoupled d isturbance Ç补偿器 (DDC) 方法。然而,由于控制输入饱和下错误状态中不可预测的瞬态,它可能会出现问题。本文研究了从饱和区域过渡到不饱和区域后离散时间 SDA 的误差动力学,称为解耦误差动力学。解耦误差动力学可以通过塑造“隐藏”滑动流形来设计,该流形仅在转换后激活。在分析的基础上,提出了一种解耦误差动力学的系统设计方法,它可以防止控制输入饱和的再次发生并提供误差状态的快速收敛。所提出的设计方法的有效性通过使用工业直线电机系统的实验显示出来。

更新日期:2021-06-07
down
wechat
bug