当前位置: X-MOL 学术Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Incorporation of gradient-enhanced microplane damage model into isogeometric analysis
Engineering Computations ( IF 1.5 ) Pub Date : 2021-06-04 , DOI: 10.1108/ec-08-2020-0455
Jike Han , Bo Yin , Michael Kaliske , Kenjiro Tarada

Purpose

This study aims to develop a new analysis approach devised by incorporating a gradient-enhanced microplane damage model (GeMpDM) into isogeometric analysis (IGA), which shows computational stability and capability in accurately predicting crack propagations in structures with complex geometries.

Design/methodology/approach

For the non-local microplane damage modeling, the maximum modified von-Mises equivalent strain among all microplanes is regularized as a representative quantity. This characterization implies that only one additional governing equation is considered, which improves computational efficiency dramatically. By combined use of GeMpDM and IGA, quasi-static and dynamic numerical analyses are conducted to demonstrate the capability in predicting crack paths of complex geometries in comparison to FEM and experimental results.

Findings

The implicit scheme with the adopted damage model shows favorable numerical stability and the numerical results exhibit appropriate convergence characteristics concerning the mesh size. The damage evolution is successfully controlled by a tension-compression damage factor. Thanks to the advanced geometric design capability of IGA, the details of crack patterns can be predicted reliably, which are somewhat difficult to be acquired by FEM. Additionally, the damage distribution obtained in the dynamic analysis is in close agreement with experimental results.

Originality/value

The paper originally incorporates GeMpDM into IGA. Especially, only one non-local variable is considered besides the displacement field, which improves the computational efficiency and favorable convergence characteristics within the IGA framework. Also, enjoying the geometric design ability of IGA, the proposed analysis method is capable of accurately predicting crack paths reflecting the complex geometries of target structures.



中文翻译:

将梯度增强微平面损伤模型纳入等几何分析

目的

本研究旨在开发一种新的分析方法,通过将梯度增强微平面损伤模型 (GeMpDM) 纳入等几何分析 (IGA),该方法显示了计算稳定性和准确预测复杂几何结构中裂纹扩展的能力。

设计/方法/方法

对于非局部微平面损伤建模,将所有微平面中的最大修正 von-Mises 等效应变正则化为代表量。这种表征意味着只考虑一个额外的控制方程,这显着提高了计算效率。通过结合使用 GeMpDM 和 IGA,进行准静态和动态数值分析,以证明与 FEM 和实验结果相比,预测复杂几何形状的裂纹路径的能力。

发现

采用损伤模型的隐式方案显示出良好的数值稳定性,数值结果在网格尺寸方面表现出适当的收敛特性。损伤演化成功地由拉压损伤因子控制。得益于 IGA 先进的几何设计能力,可以可靠地预测裂纹图案的细节,而 FEM 很难获得这些细节。此外,动态分析中获得的损伤分布与实验结果非常吻合。

原创性/价值

该论文最初将 GeMpDM 并入 IGA。特别是,除了位移场之外,只考虑了一个非局部变量,这提高了 IGA 框架内的计算效率和良好的收敛特性。此外,利用IGA的几何设计能力,所提出的分析方法能够准确预测反映目标结构复杂几何形状的裂纹路径。

更新日期:2021-06-04
down
wechat
bug