当前位置: X-MOL 学术J. Dyn. Diff. Equat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hopf Bifurcation for General 1D Semilinear Wave Equations with Delay
Journal of Dynamics and Differential Equations ( IF 1.3 ) Pub Date : 2021-06-04 , DOI: 10.1007/s10884-021-10009-1
Irina Kmit , Lutz Recke

We consider boundary value problems for 1D autonomous damped and delayed semilinear wave equations of the type

$$\begin{aligned} \partial ^2_tu(t,x)- a(x,\lambda )^2\partial _x^2u(t,x)= b(x,\lambda ,u(t,x),u(t-\tau ,x),\partial _tu(t,x),\partial _xu(t,x)), \; x \in (0,1) \end{aligned}$$

with smooth coefficient functions a and b such that \(a(x,\lambda )>0\) and \(b(x,\lambda ,0,0,0,0) = 0\) for all x and \(\lambda \). We state conditions ensuring Hopf bifurcation, i.e., existence, local uniqueness (up to time shifts), regularity (with respect to t and x) and smooth dependence (on \(\tau \) and \(\lambda \)) of small non-stationary time-periodic solutions, which bifurcate from the stationary solution \(u=0\), and we derive a formula which determines the bifurcation direction with respect to the bifurcation parameter \(\tau \). To this end, we transform the wave equation into a system of partial integral equations by means of integration along characteristics and then apply a Lyapunov-Schmidt procedure and a generalized implicit function theorem. The main technical difficulties, which have to be managed, are typical for hyperbolic PDEs (with or without delay): small divisors and the “loss of derivatives” property. We do not use any properties of the corresponding initial-boundary value problem. In particular, our results are true also for negative delays \(\tau \).



中文翻译:

具有延迟的一般一维半线性波动方程的 Hopf 分岔

我们考虑一维自主阻尼和延迟半线性波动方程的边值问题

$$\begin{aligned} \partial ^2_tu(t,x)- a(x,\lambda )^2\partial _x^2u(t,x)= b(x,\lambda ,u(t,x) ,u(t-\tau,x),\partial_tu(t,x),\partial_xu(t,x)),\; x \in (0,1) \end{对齐}$$

具有平滑系数函数ab使得\(a(x,\lambda )>0\)\(b(x,\lambda ,0,0,0,0) = 0\)对于所有x\( λ \)。我们陈述了确保 Hopf 分岔的条件,即存在性、局部唯一性(直到时移)、规律性(关于tx)和平滑依赖(对\(\tau \)\(\lambda \))的小非平稳时间周期解,从平稳解\(u=0\)分岔,我们推导出一个公式,该公式确定关于分岔参数\(\tau \)的分岔方向 . 为此,我们通过沿特征积分的方式将波动方程转化为偏积分方程组,然后应用Lyapunov-Schmidt过程和广义隐函数定理。必须解决的主要技术难题是双曲线 PDE(有或没有延迟)的典型难题:小除数和“导数损失”属性。我们不使用相应初始边界值问题的任何性质。特别是,我们的结果对于负延迟\(\tau \) 也是正确的

更新日期:2021-06-04
down
wechat
bug