当前位置: X-MOL 学术J. Algebra Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On power invariant rings
Journal of Algebra and Its Applications ( IF 0.5 ) Pub Date : 2021-06-03 , DOI: 10.1142/s021949882250164x
Mohamed Khalifa 1
Affiliation  

Let R be a commutative ring with identity, X be an indeterminate and Ic(R) be the set of elements a of R such that there exists an R-homomorphism of rings σ:R[[X]]R with σ(X)=a. O’Malley called R to be power invariant (respectively, strongly power invariant) if whenever S is a ring such that R[[X]] is isomorphic to S[[X]] (respectively, whenever S is a ring and φ is an isomorphism of R[[X]] onto S[[X]]), then R and S are isomorphic (respectively, then there exists an S-automorphism ψ of S[[X]] such that ψ(X)=φ(X)) [M. O’Malley, Isomorphic power series rings, Pacific J. Math. 41(2) (1972) 503–512]. We prove that a ring R is power invariant in each of the following case: (1)R is a domain in which Ic(R) is comparable to each radical ideal of R (for instance a domain with Krull dimension one), (2)R is a domain in which Jac(R) (i.e. the Jacobson radical of R) is comparable to each radical ideal of R and (3)R is a Prüfer domain. Also in each of the aforementioned case, we prove that either R is strongly power invariant or R is isomorphic to a quasi-local power series ring. Let M be a unital module over R. We show that if R is reduced and strongly power invariant, then Nagata’s idealization ring R(+)M is strongly power invariant (but the converse is false). Ishibashi called a ring R to be stronglyn-power invariant if whenever S is a ring and φ is an isomorphism of R[[X1,,Xn]] onto S[[X1,,Xn]], then there exists an S-automorphism ψ of S[[X1,,Xn]] such that ψ(Xi)=φ(Xi) for each i. We prove that if R is a ring in which Ic(R) is nil, then R is stronglyn-power invariant for all positive integer n. We deduce that every polynomial ring in finitely many indeterminates is stronglyn-power invariant for all positive integer n.



中文翻译:

关于幂不变环

R是一个具有恒等式的交换环,X是一个不确定的和C(R)是元素的集合一个R使得存在一个R- 环的同态σR[[X]]Rσ(X)=一个. 奥马利打电话给R幂不变的(分别是强幂不变的),如果小号是一个环,使得R[[X]]同构于小号[[X]](分别地,每当小号是一个环并且φ是一个同构R[[X]]小号[[X]]), 然后R小号是同构的(分别存在小号-自同构ψ小号[[X]]这样ψ(X)=φ(X)) [M. O'Malley,同构幂级数环,Pacific J. Math。 41 (2) (1972) 503–512]。我们证明一个环R在以下每种情况下都是幂不变的:(1)R是一个域,其中C(R)可与每一个激进的理想相媲美R(例如具有 Krull 维一的域),(2)R是一个域,其中 Jac(R)(即雅各布森根R) 可与R(3)R是一个 Prüfer 域。同样在上述每种情况下,我们证明R强幂不变的或R同构于准局部幂级数环。让是一个单元模块R. 我们证明如果R是约简和强幂不变性,则 Nagata 的理想化环R(+)强幂不变的(但反过来是错误的)。石桥叫响R坚强n- 幂不变,如果任何时候小号是一个环并且φ是一个同构R[[X1,,Xn]]小号[[X1,,Xn]], 那么存在一个小号-自同构ψ小号[[X1,,Xn]]这样ψ(X一世)=φ(X一世)对于每个一世. 我们证明如果R是一个环,其中C(R)为零,则R强烈的n-所有正整数的幂不变n. 我们推导出有限多不定项中的每个多项式环是n-所有正整数的幂不变n.

更新日期:2021-06-03
down
wechat
bug