当前位置: X-MOL 学术Earths Future › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CMIP5 Intermodel Relationships in the Baseline Southern Ocean Climate System and With Future Projections
Earth's Future ( IF 8.852 ) Pub Date : 2021-06-04 , DOI: 10.1029/2020ef001873
Jules B. Kajtar 1, 2, 3 , Agus Santoso 3, 4, 5 , Matthew Collins 1 , Andréa S. Taschetto 3, 4 , Matthew H. England 3, 4 , Leela M. Frankcombe 3, 4
Affiliation  

Climate models exhibit a broad range in the simulated properties of the climate system. In the early historical period, the absolute global mean surface air temperature in Coupled Model Intercomparison Project, Phase 5 (CMIP5) models spans a range of ∼12°C – 15°C. Other climate variables may be linked to global mean temperature, and so accurate representation of the baseline climate state is crucial for meaningful future climate projections. In CMIP5 baseline climate states, statistically significant intermodel correlations between Southern Ocean surface temperature, outgoing shortwave radiation, cloudiness, the position of the mid-latitude eddy-driven jet, and Antarctic sea ice area are found. The baseline temperature relationships extend to projected future changes in the same set of variables, impacting on the projected global mean surface temperature change. Models with initially cooler Southern Ocean tend to exhibit more global warming, and vice versa for initially warmer models. These relationships arise due to a “capacity for change”. For example, cold-biased models tend to have more cloud cover, sea ice, and equatorward jet initially, and thus a greater capacity to lose cloud cover and sea ice, and for the jet to shift poleward under global warming. A first look at emerging data from CMIP6 reveals a shift of the relationship from the Southern Ocean towards the Antarctic region, possibly due to reductions in Southern Ocean biases, such as in westerly wind representation.

中文翻译:

CMIP5 基线南大洋气候系统和未来预测的模型间关系

气候模型在气候系统的模拟特性方面表现出广泛的范围。在早期历史时期,耦合模型比对项目第 5 阶段 (CMIP5) 模型中的绝对全球平均地表气温跨越了约 12°C – 15°C 的范围。其他气候变量可能与全球平均温度有关,因此准确表示基线气候状态对于有意义的未来气候预测至关重要。在 CMIP5 基线气候状态中,发现了南大洋表面温度、出射短波辐射、云量、中纬度涡驱动急流的位置和南极海冰区之间具有统计学意义的模型间相关性。基线温度关系扩展到同一组变量中预计的未来变化,影响预计的全球平均地表温度变化。最初较冷的南大洋模型往往表现出更多的全球变暖,反之亦然,对于最初较暖的模型。这些关系是由于“变革能力”而产生的。例如,冷偏模型最初往往有更多的云层、海冰和赤道急流,因此失去云层和海冰的能力更大,并且在全球变暖下急流向极地转移。对来自 CMIP6 的新数据的初步观察揭示了关系从南大洋向南极地区的转变,这可能是由于南大洋偏差的减少,例如西风表示。这些关系是由于“变革能力”而产生的。例如,冷偏模型最初往往有更多的云层、海冰和赤道急流,因此在全球变暖下失去云层和海冰的能力更大,并且急流向极地转移。对来自 CMIP6 的新数据的初步观察揭示了关系从南大洋向南极地区的转变,这可能是由于南大洋偏差的减少,例如西风表示。这些关系是由于“变革能力”而产生的。例如,冷偏模型最初往往有更多的云层、海冰和赤道急流,因此在全球变暖下失去云层和海冰的能力更大,并且急流向极地转移。对来自 CMIP6 的新数据的初步观察揭示了关系从南大洋向南极地区的转变,这可能是由于南大洋偏差的减少,例如西风表示。
更新日期:2021-06-25
down
wechat
bug