当前位置: X-MOL 学术Molecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions
Molecules ( IF 4.6 ) Pub Date : 2021-06-03 , DOI: 10.3390/molecules26113378
Heiko Lokstein 1 , Gernot Renger 2 , Jan P Götze 3
Affiliation  

Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.

中文翻译:

光合光捕获(天线)复合物——结构和功能

叶绿素和细菌叶绿素与类胡萝卜素以非共价结合的方式与特定的载脂蛋白结合,作为光合生物中主要的光收集和能量转换色素。近年来,在阐明捕光(天线)复合物、光合反应中心甚至整个光系统的结构和功能方面取得了巨大进展。越来越清楚的是,光捕获复合物不仅有助于扩大各自反应中心的吸收截面,而且在光合作用装置的短期和长期适应以及响应能量转换过程的调节中也至关重要。外部和内部条件。因此,光合作用天线“设计”中的各种结构多样性变得可以想象。然而,LHC 形成三聚体(或其倍数)结构是很常见的。我们基于光合膜系统创建的 2D 世界,对三聚体问题提出了一个简单、初步的解释。
更新日期:2021-06-03
down
wechat
bug