当前位置: X-MOL 学术Nat. Resour. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evolution of Anisotropic Coal Permeability Under the Effect of Heterogeneous Deformation of Fractures
Natural Resources Research ( IF 4.8 ) Pub Date : 2021-06-03 , DOI: 10.1007/s11053-021-09889-3
Jianhua Li , Bobo Li , Qiaoyun Cheng , Zheng Gao

Permeability is one of the key parameters to better understand the processes of coalbed methane mining and carbon dioxide geological storage. As a unique porous medium, coal usually possesses distinct deformation characteristics. In this work, we used a cubic model to characterize the physical structure of coal. The fracture system in coal contained both soft and hard parts subject to the natural-strain-based Hooke law and engineering-strain-based Hooke law, respectively. By analyzing the changes in the soft and hard parts of fractures, we explored heterogeneous deformation in coal. However, coal usually exhibits strong anisotropy under reservoir conditions, and the permeability in each direction is different. First, based on the generalized Hooke law, we characterized fracture deformation in coal along all directions under stress. Moreover, based on the definition of the coal porosity, we proposed an anisotropic coal permeability model under heterogeneous fracture deformation, and the model was verified against experimental data reported in the literature. Second, based on our proposed model, we examined the influence of the soft/hard parts of fractures on permeability, and the contribution of gas adsorption to the coal permeability was also analyzed. When the confining pressure remained constant, a higher proportion of the soft parts of fractures corresponded to a larger permeability change, and a higher internal expansion factor corresponded to a lower permeability. In addition, we assessed the influence of slippage on the permeability in the effective stress change process and incorporated the slippage effect into the permeability model.



中文翻译:

裂缝非均质变形作用下煤的各向异性渗透率演化

渗透率是更好地了解煤层气开采和二氧化碳地质封存过程的关键参数之一。煤作为一种独特的多孔介质,通常具有明显的变形特征。在这项工作中,我们使用三次模型来表征煤的物理结构。煤中的断裂系统包含软部分和硬部分,分别服从基于自然应变的胡克定律和基于工程应变的胡克定律。通过分析裂缝软硬部分的变化,探讨了煤的非均质变形。但煤在储层条件下通常表现出很强的各向异性,各个方向的渗透率不同。首先,基于广义胡克定律,我们表征了煤在应力作用下沿各个方向的断裂变形。而且,基于煤的孔隙度定义,我们提出了非均质裂缝变形下煤的各向异性渗透率模型,并根据文献报道的实验数据对该模型进行了验证。其次,基于我们提出的模型,我们研究了裂缝软硬部分对渗透率的影响,并分析了瓦斯吸附对煤渗透率的贡献。当围压不变时,裂缝软部比例越高,渗透率变化越大,内膨胀系数越大,渗透率越低。此外,我们在有效应力变化过程中评估了滑移对渗透率的影响,并将滑移效应纳入渗透率模型。我们提出了非均质裂缝变形下的各向异性煤渗透率模型,并根据文献报道的实验数据对该模型进行了验证。其次,基于我们提出的模型,我们研究了裂缝软硬部分对渗透率的影响,并分析了瓦斯吸附对煤渗透率的贡献。当围压不变时,裂缝软部比例越高,渗透率变化越大,内膨胀系数越大,渗透率越低。此外,我们在有效应力变化过程中评估了滑移对渗透率的影响,并将滑移效应纳入渗透率模型。我们提出了非均质裂缝变形下的各向异性煤渗透率模型,并根据文献报道的实验数据对该模型进行了验证。其次,基于我们提出的模型,我们研究了裂缝软硬部分对渗透率的影响,并分析了瓦斯吸附对煤渗透率的贡献。当围压不变时,裂缝软部比例越高,渗透率变化越大,内膨胀系数越大,渗透率越低。此外,我们在有效应力变化过程中评估了滑移对渗透率的影响,并将滑移效应纳入渗透率模型。并根据文献报道的实验数据对模型进行了验证。其次,基于我们提出的模型,我们研究了裂缝软硬部分对渗透率的影响,并分析了瓦斯吸附对煤渗透率的贡献。当围压不变时,裂缝软部比例越高,渗透率变化越大,内膨胀系数越大,渗透率越低。此外,我们在有效应力变化过程中评估了滑移对渗透率的影响,并将滑移效应纳入渗透率模型。并根据文献报道的实验数据对模型进行了验证。其次,基于我们提出的模型,我们研究了裂缝软硬部分对渗透率的影响,并分析了瓦斯吸附对煤渗透率的贡献。当围压不变时,裂缝软部比例越高,渗透率变化越大,内膨胀系数越大,渗透率越低。此外,我们在有效应力变化过程中评估了滑移对渗透率的影响,并将滑移效应纳入渗透率模型。我们研究了裂缝软硬部分对渗透率的影响,并分析了瓦斯吸附对煤渗透率的贡献。当围压不变时,裂缝软部比例越高,渗透率变化越大,内膨胀系数越大,渗透率越低。此外,我们在有效应力变化过程中评估了滑移对渗透率的影响,并将滑移效应纳入渗透率模型。我们研究了裂缝软硬部分对渗透率的影响,并分析了瓦斯吸附对煤渗透率的贡献。当围压不变时,裂缝软部比例越高,渗透率变化越大,内膨胀系数越大,渗透率越低。此外,我们在有效应力变化过程中评估了滑移对渗透率的影响,并将滑移效应纳入渗透率模型。较高的内膨胀系数对应较低的渗透率。此外,我们在有效应力变化过程中评估了滑移对渗透率的影响,并将滑移效应纳入渗透率模型。较高的内膨胀系数对应较低的渗透率。此外,我们在有效应力变化过程中评估了滑移对渗透率的影响,并将滑移效应纳入渗透率模型。

更新日期:2021-06-03
down
wechat
bug