当前位置: X-MOL 学术Int. J. Numer. Meth. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bayesian inference with subset simulation in varying dimensions applied to the Karhunen–Loève expansion
International Journal for Numerical Methods in Engineering ( IF 2.7 ) Pub Date : 2021-06-02 , DOI: 10.1002/nme.6758
Felipe Uribe 1 , Iason Papaioannou 1 , Jonas Latz 2 , Wolfgang Betz 1 , Elisabeth Ullmann 2 , Daniel Straub 1
Affiliation  

Uncertainties associated with spatially varying parameters are modeled through random fields discretized into a finite number of random variables. Standard discretization methods, such as the Karhunen–Loève expansion, use series representations for which the truncation order is specified a priori. However, when data is used to update random fields through Bayesian inference, a different truncation order might be necessary to adequately represent the posterior random field. This is an inference problem that not only requires the determination of the often high-dimensional set of coefficients, but also their dimension. In this article, we develop a sequential algorithm to handle such inference settings and propose a penalizing prior distribution for the dimension parameter. The method is a variable-dimensional extension of BUS (Bayesian Updating with Structural reliability methods), combined with subset simulation (SuS). The key idea is to replace the standard Markov Chain Monte Carlo (MCMC) algorithm within SuS by a trans-dimensional MCMC sampler that is able to populate the discrete-continuous parameter space. To address this task, we consider two types of MCMC algorithms that operate in a fixed-dimensional saturated space. The performance of the proposed method with both MCMC variants is assessed numerically for two examples: a 1D cantilever beam with spatially varying flexibility and a 2D groundwater flow problem with uncertain permeability field.

中文翻译:

应用于 Karhunen-Loève 扩展的不同维度子集模拟的贝叶斯推理

与空间变化参数相关的不确定性通过离散为有限数量的随机变量的随机场建模。标准离散化方法,例如 Karhunen-Loève 展开式,使用先验指定截断顺序的级数表示。然而,当数据用于通过贝叶斯推理更新随机场时,可能需要不同的截断顺序来充分表示后验随机场。这是一个推理问题,不仅需要确定通常高维的系数集,还需要确定它们的维数。在本文中,我们开发了一种顺序算法来处理此类推理设置,并提出了维度参数的惩罚先验分布。该方法是BUS(带结构可靠性方法的贝叶斯更新)的变维扩展,结合子集模拟(SuS)。关键思想是用能够填充离散连续参数空间的跨维 MCMC 采样器替换 SuS 中的标准马尔可夫链蒙特卡罗 (MCMC) 算法。为了解决这个任务,我们考虑了两种在固定维饱和空间中运行的 MCMC 算法。所提出的方法与两种 MCMC 变体的性能通过两个示例进行数值评估:具有空间变化灵活性的一维悬臂梁和具有不确定渗透场的二维地下水流动问题。关键思想是用能够填充离散连续参数空间的跨维 MCMC 采样器替换 SuS 中的标准马尔可夫链蒙特卡罗 (MCMC) 算法。为了解决这个任务,我们考虑了两种在固定维饱和空间中运行的 MCMC 算法。所提出的方法与两种 MCMC 变体的性能通过两个示例进行数值评估:具有空间变化灵活性的一维悬臂梁和具有不确定渗透场的二维地下水流动问题。关键思想是用能够填充离散连续参数空间的跨维 MCMC 采样器替换 SuS 中的标准马尔可夫链蒙特卡罗 (MCMC) 算法。为了解决这个任务,我们考虑了两种在固定维饱和空间中运行的 MCMC 算法。所提出的方法与两种 MCMC 变体的性能通过两个示例进行数值评估:具有空间变化灵活性的一维悬臂梁和具有不确定渗透场的二维地下水流动问题。
更新日期:2021-08-10
down
wechat
bug