当前位置: X-MOL 学术J. Geod. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling the gravitational field by using CFD techniques
Journal of Geodesy ( IF 3.9 ) Pub Date : 2021-06-02 , DOI: 10.1007/s00190-021-01504-w
Zhi Yin , Nico Sneeuw

A harmonic scalar field has a Laplacian (i.e., both source-free and curl-free) gradient vector field and vice versa. Despite the good performance of spherical harmonic series on modeling the gravitational field generated by spheroidal bodies (e.g., the Earth), the series may diverge inside the Brillouin sphere enclosing all field-generating mass. Divergence may realistically occur when determining the gravitational fields of asteroids or comets that have complex shapes, which is known as the complex-boundary value problem (CBVP). To overcome this weakness, we propose a new spatial-domain numerical method based on the equivalence transformation which is well known in the fluid dynamics community: a potential-flow velocity field and a gravitational force vector field are equivalent in a mathematical sense, both referring to a Laplacian vector field. The new method abandons the perturbation theory based on the Laplace equation, and, instead, derives the governing equation and the boundary condition of the potential flow from the conservation laws of mass, momentum and energy. Correspondingly, computational fluid dynamics (CFD) techniques are introduced as a numerical solving scheme. We apply this novel approach to the gravitational field of the comet 67P/Churyumov–Gerasimenko which has an irregular shape. The method is validated in a closed-loop simulation by comparing the result with a direct integration of Newton’s formula. Both methods are consistent with a relative magnitude discrepancy at the percentage level and with a small directional difference root-mean-square value of \(0.78^{\circ }\). Moreover, the Laplacian property of the potential flow’s velocity field is proved mathematically. From both theoretical and practical points of view, the new numerical method is able to overcome the divergence problem and, hence, has a good potential for solving CBVPs.



中文翻译:

使用 CFD 技术模拟引力场

谐波标量场具有拉普拉斯(即,无源和无旋度)梯度矢量场,反之亦然。尽管球谐系列在模拟由球体(例如地球)产生的引力场方面表现良好,但该系列可能在包围所有场产生质量的布里渊球内发散。在确定具有复杂形状的小行星或彗星的引力场时,实际上可能会发生发散,这被称为复杂边界值问题 (CBVP)。为了克服这个弱点,我们提出了一种新的基于等效变换的空间域数值方法,这在流体动力学界是众所周知的:势流速度场和重力矢量场在数学意义上是等效的,两者都指到拉普拉斯向量场。新方法摒弃了基于拉普拉斯方程的微扰理论,而是从质量、动量和能量守恒定律中推导出势流的控制方程和边界条件。相应地,引入了计算流体动力学 (CFD) 技术作为数值求解方案。我们将这种新颖的方法应用于具有不规则形状的 67P/Churyumov-Gerasimenko 彗星的引力场。通过将结果与牛顿公式的直接积分进行比较,该方法在闭环仿真中得到验证。两种方法都与百分比水平的相对幅度差异一致,并且均方根值的小方向差异为 根据质量、动量和能量守恒定律推导出势流的控制方程和边界条件。相应地,引入了计算流体动力学 (CFD) 技术作为数值求解方案。我们将这种新颖的方法应用于具有不规则形状的 67P/Churyumov-Gerasimenko 彗星的引力场。通过将结果与牛顿公式的直接积分进行比较,该方法在闭环仿真中得到验证。两种方法都在百分比水平上与相对幅度差异一致,并且均方根值的小方向差异为 根据质量、动量和能量守恒定律推导出势流的控制方程和边界条件。相应地,引入了计算流体动力学 (CFD) 技术作为数值求解方案。我们将这种新颖的方法应用于具有不规则形状的 67P/Churyumov-Gerasimenko 彗星的引力场。通过将结果与牛顿公式的直接积分进行比较,该方法在闭环仿真中得到验证。两种方法都与百分比水平的相对幅度差异一致,并且均方根值的小方向差异为 引入了计算流体动力学 (CFD) 技术作为数值求解方案。我们将这种新颖的方法应用于具有不规则形状的 67P/Churyumov-Gerasimenko 彗星的引力场。通过将结果与牛顿公式的直接积分进行比较,该方法在闭环仿真中得到验证。两种方法都与百分比水平的相对幅度差异一致,并且均方根值的小方向差异为 引入了计算流体动力学 (CFD) 技术作为数值求解方案。我们将这种新颖的方法应用于具有不规则形状的 67P/Churyumov-Gerasimenko 彗星的引力场。通过将结果与牛顿公式的直接积分进行比较,该方法在闭环仿真中得到验证。两种方法都与百分比水平的相对幅度差异一致,并且均方根值的小方向差异为\(0.78^{\circ }\)。此外,从数学上证明了势流速度场的拉普拉斯性质。从理论和实践的角度来看,新的数值方法能够克服发散问题,因此具有解决 CBVP 的良好潜力。

更新日期:2021-06-03
down
wechat
bug