当前位置: X-MOL 学术ZAMM › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stress analysis of an orthotropic elastic infinite plane with a hole
ZAMM - Journal of Applied Mathematics and Mechanics ( IF 2.3 ) Pub Date : 2021-06-03 , DOI: 10.1002/zamm.202000184
Norio Hasebe 1
Affiliation  

A general solution (stress functions) is derived for an orthotropic elastic plane problem using a mapping function to solve arbitrary configurations. Lekhnitskii formulism using complex variable is used. A problem of an infinite orthotropic elastic plane with a hole is solved. The boundary condition is represented by two complex variables. This makes it difficult to solve the orthotropic elastic plane problem. The problem is solved by overcoming this difficulty. Two methods of Cauchy integral and Riemann-Hilbert problem are applied for the analysis. It is confirmed that the same exact stress functions are finally obtained by these methods and are represented by an irrational mapping function as a closed form. These stress functions are the general solution for the holed problem. The Mittag-Leffler Theorem is used for the analysis. Therefore, there are two methods to solve an external boundary value problem. Stress components are represented by one complex variable. Therefore, it is not difficult to calculate the stress components. Arbitrarily shaped hole problem can be solved by changing the mapping function in the stress functions. The stress distributions for an infinite plane with a square hole subjected to uniform tension for Case I and III problems are shown. Symmetry of the stress distribution is lost for a Case III problem. A problem of a half plane with an edge crack is solved as Riemann-Hilbert problem. It is confirmed that the solution coincide with that obtained by Cauchy integral method.

中文翻译:

带孔的正交各向异性弹性无限平面的应力分析

使用映射函数求解任意配置,推导出正交各向异性弹性平面问题的一般解决方案(应力函数)。使用使用复变量的 Lekhnitskii 公式。求解了具有孔的无限正交各向异性弹性平面的问题。边界条件由两个复变量表示。这使得求解正交各向异性弹性平面问题变得困难。克服了这个困难,问题就解决了。应用柯西积分和黎曼-希尔伯特问题两种方法进行分析。经证实,通过这些方法最终获得了相同的精确应力函数,并由无理映射函数表示为封闭形式。这些应力函数是有孔问题的通用解。Mittag-Leffler 定理用于分析。所以,有两种方法可以解决外边值问题。应力分量由一个复变量表示。因此,计算应力分量并不困难。任意形状的孔问题可以通过改变应力函数中的映射函数来解决。对于情况 I 和 III 问题,显示了具有均匀张力的具有方孔的无限平面的应力分布。对于案例 III 问题,应力分布的对称性会丢失。具有边缘裂纹的半平面问题被解决为 Riemann-Hilbert 问题。证实该解与柯西积分法得到的解一致。任意形状的孔问题可以通过改变应力函数中的映射函数来解决。对于情况 I 和 III 问题,显示了具有均匀张力的具有方孔的无限平面的应力分布。对于案例 III 问题,应力分布的对称性会丢失。具有边缘裂纹的半平面问题被解决为 Riemann-Hilbert 问题。证实该解与柯西积分法得到的解一致。任意形状的孔问题可以通过改变应力函数中的映射函数来解决。对于情况 I 和 III 问题,显示了具有均匀张力的具有方孔的无限平面的应力分布。对于案例 III 问题,应力分布的对称性会丢失。具有边缘裂纹的半平面问题被解决为 Riemann-Hilbert 问题。证实该解与柯西积分法得到的解一致。具有边缘裂纹的半平面问题被解决为 Riemann-Hilbert 问题。证实该解与柯西积分法得到的解一致。具有边缘裂纹的半平面问题被解决为 Riemann-Hilbert 问题。证实该解与柯西积分法得到的解一致。
更新日期:2021-06-03
down
wechat
bug