当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation on the temperature distribution in the two-phase spider netted microchannel network heat sink with non-uniform heat flux
International Journal of Thermal Sciences ( IF 4.5 ) Pub Date : 2021-06-02 , DOI: 10.1016/j.ijthermalsci.2021.107079
Hui Tan , Pingan Du , Kuan Zong , Guangyao Meng , Xin Gao , Yang Li

The considerable increase of the heat flux and chips density on the phased array antenna has brought great challenges to the thermal management. The objective of the work is to explore an effective scheme to achieve ideal uniform temperature distribution and lower maximum temperature with the condition of non-uniform heat flux. Taking into account of the high efficiency of microchannel heat sink and the promising performance of the two-phase flow boiling heat transfer due to its merit in keeping uniform surface temperature, a novel two-phase spider netted microchannel network heat sink is proposed in this paper. Firstly, a three-dimensional fluid-solid-thermal conjugate model is developed to investigate the flow boiling heat transfer performance of the spider-netted microchannel network numerically. During the numerical calculation, a multi-scale meshing generation method is proposed to reduce modeling difficulties on the premise of proper mesh quality. Then, the flow boiling heat transfer experiment is conducted to verify the reasonable of the model and the simulation results. Finally, the flow boiling heat transfer performance in the spider netted microchannel network is compared to the typical straight microchannel network. Results show that the proposed structure yields better flow boiling heat transfer performance with lower thermal resistance and more satisfactory temperature uniformity mainly due to its uniform flow distribution and enhanced vapor movement. It is also found that the temperature uniformity has reached 1.58 °C at heat flux of 100 W/cm2, but it decreases with the increase of heat flux. This situation cannot be effectively solved by means of increasing inlet flow rate. Thus the structure optimization is conducted to enhance the flow boiling heat transfer performance further, and the optimal structure can meet requirements of temperature uniformity within 2 °C at higher heat flux of 150 W/cm2.



中文翻译:

非均匀热流密度两相蜘蛛网状微通道网络散热器温度分布研究

相控阵天线上热通量和芯片密度的大幅增加给热管理带来了巨大挑战。工作的目的是探索一种有效的方案,以在不均匀的热通量条件下实现理想的均匀温度分布和较低的最高温度。考虑到微通道散热器的高效率和两相流沸腾传热具有保持表面温度均匀的优点,本文提出了一种新型的两相蜘蛛网状微通道网络散热器。 . 首先,建立了三维流-固-热共轭模型,数值研究了蜘蛛网微通道网络的流动沸腾传热性能。在数值计算过程中,提出了一种多尺度网格生成方法,以在适当网格质量的前提下降低建模难度。然后通过流动沸腾传热实验验证了模型的合理性和仿真结果。最后,将蜘蛛网状微通道网络中的流动沸腾传热性能与典型的直微通道网络进行了比较。结果表明,所提出的结构产生更好的流动沸腾传热性能,具有更低的热阻和更令人满意的温度均匀性,这主要是由于其均匀的流动分布和增强的蒸汽运动。还发现在 100 W/cm 的热通量下温度均匀性达到了 1.58 °C 通过流动沸腾传热实验验证了模型的合理性和仿真结果。最后,将蜘蛛网状微通道网络中的流动沸腾传热性能与典型的直微通道网络进行了比较。结果表明,所提出的结构产生更好的流动沸腾传热性能,具有更低的热阻和更令人满意的温度均匀性,这主要是由于其均匀的流动分布和增强的蒸汽运动。还发现在 100 W/cm 的热通量下温度均匀性达到了 1.58 °C 通过流动沸腾传热实验验证了模型的合理性和仿真结果。最后,将蜘蛛网状微通道网络中的流动沸腾传热性能与典型的直微通道网络进行了比较。结果表明,所提出的结构产生更好的流动沸腾传热性能,具有更低的热阻和更令人满意的温度均匀性,这主要是由于其均匀的流动分布和增强的蒸汽运动。还发现在 100 W/cm 的热通量下温度均匀性达到了 1.58 °C 将蜘蛛网状微通道网络中的流动沸腾传热性能与典型的直微通道网络进行了比较。结果表明,所提出的结构产生更好的流动沸腾传热性能,具有更低的热阻和更令人满意的温度均匀性,这主要是由于其均匀的流动分布和增强的蒸汽运动。还发现在 100 W/cm 的热通量下温度均匀性达到了 1.58 °C 将蜘蛛网状微通道网络中的流动沸腾传热性能与典型的直微通道网络进行了比较。结果表明,所提出的结构产生更好的流动沸腾传热性能、更低的热阻和更令人满意的温度均匀性,这主要是由于其均匀的流动分布和增强的蒸汽运动。还发现在 100 W/cm 的热通量下温度均匀性达到了 1.58 °C2,但随着热通量的增加而减小。这种情况不能通过增加进口流量来有效解决。从而进行结构优化以进一步提高流动沸腾传热性能,优化后的结构在150 W/cm 2 的较高热通量下可满足温度均匀性在2°C以内的要求。

更新日期:2021-06-02
down
wechat
bug