当前位置: X-MOL 学术Commun. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulating molecules on a cloud-based 5-qubit IBM-Q universal quantum computer
Communications Physics ( IF 5.4 ) Pub Date : 2021-06-02 , DOI: 10.1038/s42005-021-00616-1
S. Leontica , F. Tennie , T. Farrow

Simulating the behaviour of complex quantum systems is impossible on classical supercomputers due to the exponential scaling of the number of quantum states with the number of particles in the simulated system. Quantum computers aim to break through this limit by using one quantum system to simulate another quantum system. Although in their infancy, they are a promising tool for applied fields seeking to simulate quantum interactions in complex atomic and molecular structures. Here, we show an efficient technique for transpiling the unitary evolution of quantum systems into the language of universal quantum computation using the IBM quantum computer and show that it is a viable tool for compiling near-term quantum simulation algorithms. We develop code that decomposes arbitrary 3-qubit gates and implement it in a quantum simulation first for a linear ordered chain to highlight the generality of the approach, and second, for a complex molecule. We choose the Fenna-Matthews-Olsen (FMO) photosynthetic protein because it has a well characterised Hamiltonian and presents a complex dissipative system coupled to a noisy environment that helps to improve the efficiency of energy transport. The method can be implemented in a broad range of molecular and other simulation settings.



中文翻译:

在基于云的 5 量子位 IBM-Q 通用量子计算机上模拟分子

由于量子态数量与模拟系统中粒子数量的指数关系,在经典超级计算机上模拟复杂量子系统的行为是不可能的。量子计算机旨在通过使用一个量子系统来模拟另一个量子系统来突破这一限制。尽管处于起步阶段,但它们是寻求模拟复杂原子和分子结构中的量子相互作用的应用领域的有前途的工具。在这里,我们展示了一种使用 IBM 量子计算机将量子系统的幺正演化转换为通用量子计算语言的有效技术,并表明它是编译近期量子模拟算法的可行工具。我们开发了分解任意 3 量子位门的代码,并在量子模拟中首先针对线性有序链实现它,以突出该方法的通用性,其次,针对复杂分子。我们选择 Fenna-Matthews-Olsen (FMO) 光合蛋白,因为它具有良好表征的哈密顿量,并呈现出复杂的耗散系统,与嘈杂的环境相结合,有助于提高能量传输的效率。该方法可以在广泛的分子和其他模拟设置中实施。我们选择 Fenna-Matthews-Olsen (FMO) 光合蛋白,因为它具有良好表征的哈密顿量,并呈现出复杂的耗散系统,与嘈杂的环境相结合,有助于提高能量传输的效率。该方法可以在广泛的分子和其他模拟设置中实施。我们选择 Fenna-Matthews-Olsen (FMO) 光合蛋白,因为它具有良好表征的哈密顿量,并呈现出复杂的耗散系统,与嘈杂的环境相结合,有助于提高能量传输的效率。该方法可以在广泛的分子和其他模拟设置中实施。

更新日期:2021-06-02
down
wechat
bug