当前位置: X-MOL 学术Math. Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Moduli space of logarithmic connections singular over a finite subset of a compact Riemann surface
Mathematical Research Letters ( IF 1 ) Pub Date : 2021-05-01 , DOI: 10.4310/mrl.2021.v28.n3.a10
Anoop Singh 1
Affiliation  

Let $S$ be a finite subset of a compact connected Riemann surface $X$ of genus $g \geq 2$. Let $\mathcal{M}_{lc} (n,d)$ denote the moduli space of pairs $(E, D)$, where $E$ is a holomorphic vector bundle over $X$ and $D$ is a logarithmic connection on $E$ singular over $S$, with fixed residues in the centre of $\mathfrak{gl} (n, \mathbb{C})$, where $n$ and $d$ are mutually corpime. Let $L$ denote a fixed line bundle with a logarithmic connection $D_L$ singular over $S$. Let $\mathcal{M}^{\prime}_{lc} (n, d)$ and $\mathcal{M}_{lc} (n, L)$ be the moduli spaces parametrising all pairs $(E, D)$ such that underlying vector bundle $E$ is stable and $(\bigwedge^n E, \tilde{D}) \cong (L, D_L)$ respectively. Let $\mathcal{M}^{\prime}_{lc} (n, L) \subset \mathcal{M}_{lc} (n, L)$ be the Zariski open dense subset such that the underlying vector bundle is stable. We show that there is a natural compactification of $\mathcal{M}^{\prime}_{lc} (n, d)$ and $\mathcal{M}^{\prime}_{lc} (n, L)$ and compute their Picard groups. We also show that $\mathcal{M}^{\prime}_{lc} (n, L)$ and hence $\mathcal{M}_{lc} (n, L)$ do not have any non-constant algebraic functions but they admit non-constant holomorphic functions. We also study the Picard group and algebraic functions on the moduli space of logarithmic connections singular over $S$, with arbitrary residues.

中文翻译:

在紧黎曼曲面的有限子集上奇异的对数连接的模空间

令$S$ 是属$g \geq 2$ 的紧连通黎曼曲面$X$ 的有限子集。令 $\mathcal{M}_{lc} (n,d)$ 表示对 $(E, D)$ 的模空间,其中 $E$ 是 $X$ 上的全纯向量丛,$D$ 是$S$上$E$单数的对数连接,在$\mathfrak{gl}(n,\mathbb{C})$的中心有固定残基,其中$n$和$d$互为共形。令 $L$ 表示一个固定线丛,其对数连接 $D_L$ 在 $S$ 上是单数。令 $\mathcal{M}^{\prime}_{lc} (n, d)$ 和 $\mathcal{M}_{lc} (n, L)$ 是模空间参数化所有对 $(E, D)$ 使得基础向量丛 $E$ 是稳定的,并且分别是 $(\bigwedge^n E, \tilde{D}) \cong (L, D_L)$。让 $\mathcal{M}^{\prime}_{lc} (n, L) \subset \mathcal{M}_{lc} (n, L)$ 是 Zariski 开密集子集,使得底层向量丛是稳定的。我们证明 $\mathcal{M}^{\prime}_{lc} (n, d)$ 和 $\mathcal{M}^{\prime}_{lc} (n, L )$ 并计算它们的 Picard 组。我们还表明 $\mathcal{M}^{\prime}_{lc} (n, L)$ 因此 $\mathcal{M}_{lc} (n, L)$ 没有任何非常数代数函数,但它们承认非常量全纯函数。我们还研究了在 $S$ 上奇异的对数连接的模空间上的 Picard 群和代数函数,具有任意余数。L)$ 没有任何非常量代数函数,但它们承认非常量全纯函数。我们还研究了在 $S$ 上奇异的对数连接的模空间上的 Picard 群和代数函数,具有任意余数。L)$ 没有任何非常量代数函数,但它们承认非常量全纯函数。我们还研究了在 $S$ 上奇异的对数连接的模空间上的 Picard 群和代数函数,具有任意余数。
更新日期:2021-06-02
down
wechat
bug