当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Difference-frequency generation in optically poled silicon nitride waveguides
Nanophotonics ( IF 6.5 ) Pub Date : 2021-05-01 , DOI: 10.1515/nanoph-2021-0080
Ezgi Sahin 1 , Boris Zabelich 1 , Ozan Yakar 1 , Edgars Nitiss 1 , Junqiu Liu 2 , Rui N Wang 2 , Tobias J Kippenberg 2 , Camille-Sophie Brès 1
Affiliation  

Difference-frequency generation (DFG) is elemental for nonlinear parametric processes such as optical parametric oscillation and is instrumental for generating coherent light at long wavelengths, especially in the middle infrared. Second-order nonlinear frequency conversion processes like DFG require a second-order susceptibility χ (2) , which is absent in centrosymmetric materials, e.g. silicon-based platforms. All-optical poling is a versatile method for inducing an effective χ (2) in centrosymmetric materials through periodic self-organization of charges. Such all-optically inscribed grating can compensate for the absence of the inherent second-order nonlinearity in integrated photonics platforms. Relying on this induced effective χ (2) in stoichiometric silicon nitride (Si 3 N 4 ) waveguides, second-order nonlinear frequency conversion processes, such as second-harmonic generation, were previously demonstrated. However up to now, DFG remained out of reach. Here, we report both near- and non-degenerate DFG in all-optically poled Si 3 N 4 waveguides. Exploiting dispersion engineering, particularly rethinking how dispersion can be leveraged to satisfy multiple processes simultaneously, we unlock nonlinear frequency conversion near 2 μm relying on all-optical poling at telecommunication wavelengths. The experimental results are in excellent agreement with theoretically predicted behaviours, validating our approach and opening the way for the design of new types of integrated sources in silicon photonics.

中文翻译:

光极化氮化硅波导中的差频产生

差频产生 (DFG) 是非线性参量过程(例如光学参量振荡)的基本要素,并且有助于产生长波长的相干光,尤其是在中红外波段。像 DFG 这样的二阶非线性频率转换过程需要二阶磁化率 χ (2) ,这在中心对称材料(例如硅基平台)中不存在。全光极化是一种通过电荷的周期性自组织在中心对称材料中诱导有效 χ (2) 的通用方法。这种全光学刻录光栅可以弥补集成光子学平台中固有的二阶非线性的缺失。依靠化学计量氮化硅 (Si 3 N 4 ) 波导中的这种诱导有效 χ (2),二阶非线性频率转换过程,例如二次谐波的产生,之前已经演示过。然而到目前为止,DFG仍然遥不可及。在这里,我们报告了全光极化 Si 3 N 4 波导中的近退化和非退化DFG。利用色散工程,特别是重新思考如何利用色散来同时满足多个过程,我们依靠电信波长的全光极化解锁了 2 μm 附近的非线性频率转换。实验结果与理论上预测的行为非常一致,验证了我们的方法,并为硅光子学中新型集成源的设计开辟了道路。我们报告了全光极化 Si 3 N 4 波导中的近退化和非退化DFG。利用色散工程,特别是重新思考如何利用色散来同时满足多个过程,我们依靠电信波长的全光极化解锁了 2 μm 附近的非线性频率转换。实验结果与理论上预测的行为非常一致,验证了我们的方法,并为硅光子学中新型集成源的设计开辟了道路。我们报告了全光极化 Si 3 N 4 波导中的近退化和非退化DFG。利用色散工程,特别是重新思考如何利用色散来同时满足多个过程,我们依靠电信波长的全光极化解锁了 2 μm 附近的非线性频率转换。实验结果与理论上预测的行为非常一致,验证了我们的方法,并为硅光子学中新型集成源的设计开辟了道路。我们依靠电信波长的全光极化解锁了 2 μm 附近的非线性频率转换。实验结果与理论上预测的行为非常一致,验证了我们的方法,并为硅光子学中新型集成源的设计开辟了道路。我们依靠电信波长的全光极化解锁了 2 μm 附近的非线性频率转换。实验结果与理论上预测的行为非常一致,验证了我们的方法,并为硅光子学中新型集成源的设计开辟了道路。
更新日期:2021-06-02
down
wechat
bug