当前位置: X-MOL 学术Struct. Multidisc. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aerostructural wing shape optimization assisted by algorithmic differentiation
Structural and Multidisciplinary Optimization ( IF 3.9 ) Pub Date : 2021-06-02 , DOI: 10.1007/s00158-021-02884-5
Rocco Bombardieri , Rauno Cavallaro , Ruben Sanchez , Nicolas R. Gauger

With more efficient structures, last trends in aeronautics have witnessed an increased flexibility of wings, calling for adequate design and optimization approaches. To correctly model the coupled physics, aerostructural optimization has progressively become more important, being nowadays performed also considering higher-fidelity discipline methods, i.e., CFD for aerodynamics and FEM for structures. In this work a model for high-fidelity gradient-based aerostructural optimization of wings, assisted by algorithmic differentiation and including aerodynamic and structural nonlinearities, is presented. First, the model is illustrated: a key feature lies in its enhanced modularity. Each discipline solver, employing algorithmic differentiation for the evaluation of adjoint-based sensitivities, is interfaced at high-level by means of a wrapper to both solve the aerostructural primal problem and evaluate discrete-consistent gradients of the coupled problem. Second, to demonstrate the feasibility of the method, a framework is ad hoc set up, within the open-source SU2 multiphysics suite, with the inclusion of a geometrically nonlinear beam FE and an interface module to deal with non-matching 3D surfaces. Finally, the framework is applied to perform aerostructural optimization of aeroelastic test cases based on the ONERA M6 and NASA CRM wings. Single-point optimizations, employing Euler or RANS flow models, are carried out to find wing optimal outer mold line in terms of aerodynamic efficiency. Results remark the importance of taking into account the aerostructural coupling when performing wing shape optimization.



中文翻译:

算法微分辅助的航空结构机翼形状优化

随着更高效的结构,航空业的最新趋势见证了机翼灵活性的增加,需要适当的设计和优化方法。为了正确模拟耦合物理,航空结构优化逐渐变得越来越重要,现在也考虑更高保真度的学科方法,即空气动力学的 CFD 和结构的 FEM。在这项工作中,提出了一种基于高保真梯度的机翼航空结构优化模型,该模型由算法微分辅助并包括空气动力学和结构非线性。首先,对模型进行说明:一个关键特征在于其增强的模块化。每个学科求解器,采用算法微分来评估基于伴随的敏感性,通过包装器在高层进行接口,以解决航空结构的原始问题并评估耦合问题的离散一致梯度。其次,为了证明该方法的可行性,在开源 SU2 多物理场套件中特别设置了一个框架,其中包含几何非线性梁 FE 和用于处理不匹配 3D 表面的接口模块。最后,该框架被应用于基于ONERA M6和NASA CRM机翼的气动弹性测试案例的航空结构优化。使用欧拉或 RANS 流动模型进行单点优化,以找到机翼在空气动力学效率方面的最佳外型线。结果表明在执行机翼形状优化时考虑航空结构耦合的重要性。

更新日期:2021-06-02
down
wechat
bug