当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modelling and analysis of micro-grinding surface generation of hard brittle material machined by micro abrasive tools with helical chip pocket
Journal of Materials Processing Technology ( IF 6.7 ) Pub Date : 2021-06-01 , DOI: 10.1016/j.jmatprotec.2021.117242
Yao Sun , Zhipeng Su , Liya Jin , Yadong Gong , Dechun Ba , Guoqiang Yin , Mingjun Liu

The abrasive particles on the surface of micro abrasive tool are very small and tightly distributed, which is prone to appear debris blockage and accelerate tool wear, so the service life and performance of existing micro abrasive tools have become one of the key factors restricting the engineering application of micro-grinding technology. Compared to ordinary cylindrical micro abrasive tools, the micro abrasive tool with micro helical chip pocket (MAT-HCP) presents excellent performance in facilitating debris discharge and improving wear resistance, but the existence of helical chip pocket will significantly affect grains distribution, grinding contact area and surface generated mechanism in the micro-grinding process. In this work, the micro-grinding surface topography model of hard brittle materials obtained with MAT-HCP is built by considering grain size and distribution, dynamic impact, helical chip pocket structures, transient chip thickness and hard brittle material removal mechanism. The micro- grinding experiments are carried out to analyze surface morphology characteristics and surface generated mechanism of sapphire material machined by MAT-HCP. The contrast of simulated and experimental results showed that the average predicted error of contour supported ductility domain ratio and surface roughness respectively can be confined to be 10 % and 5%, which indicates that this surface topography predicted model can succeed in capturing the micro-grinding surface characteristics of sapphire material fabricated by MAT-HCP. Moreover, experimental results disclosed that the increase of pitch length will make MAT-HCP harder to realize the plastic region machining for sapphire, and this novel micro abrasive tool is potential to obtain better surface quality at high feed velocity compared with ordinary micro abrasive tools. The research results are of great significance for extending the service life of micro abrasive tools and promoting engineering application of micro-grinding technology.



中文翻译:

螺旋容屑槽微磨具加工硬脆材料微磨削表面生成建模与分析

微型磨具表面的磨粒非常细小且分布紧密,容易出现碎屑堵塞,加速刀具磨损,因此现有微型磨具的使用寿命和性能已成为制约其工程化的关键因素之一。微粉碎技术的应用。与普通圆柱微磨具相比,带有微螺旋容屑槽的微磨具(MAT-HCP)在促进排屑和提高耐磨性方面表现出优异的性能,但螺旋容屑槽的存在会显着影响晶粒分布、磨削接触面积微磨削过程中的表面生成机制。在这项工作中,考虑晶粒尺寸和分布、动态冲击、螺旋容屑槽结构、瞬态切屑厚度和硬脆材料去除机制,建立了用MAT-HCP获得的硬脆材料微磨削表面形貌模型。进行微研磨实验以分析 MAT-HCP 加工的蓝宝石材料的表面形貌特征和表面生成机制。模拟结果与实验结果对比表明,轮廓支撑的延性域比和表面粗糙度的平均预测误差分别可以限制在10%和5%,表明该表面形貌预测模型能够成功地捕捉微磨削。 MAT-HCP 制造的蓝宝石材料的表面特性。而且,实验结果表明,节距长度的增加将使 MAT-HCP 更难实现蓝宝石的塑性区域加工,与普通微磨具相比,这种新型微磨具在高进给速度下有可能获得更好的表面质量。研究成果对延长微磨具的使用寿命,促进微磨技术的工程应用具有重要意义。

更新日期:2021-06-05
down
wechat
bug