当前位置: X-MOL 学术SIAM J. Discret. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bipartite Independence Number in Graphs with Bounded Maximum Degree
SIAM Journal on Discrete Mathematics ( IF 0.9 ) Pub Date : 2021-06-01 , DOI: 10.1137/20m1321760
Maria Axenovich , Jean-Sébastien Sereni , Richard Snyder , Lea Weber

SIAM Journal on Discrete Mathematics, Volume 35, Issue 2, Page 1136-1148, January 2021.
We consider a natural, yet seemingly not much studied, extremal problem in bipartite graphs. A bi-hole of size $t$ in a bipartite graph $G$ with a fixed bipartition is an independent set with exactly $t$ vertices in each part; in other words, it is a copy of $K_{t, t}$ in the bipartite complement of $G$. Let $f(n, \Delta)$ be the largest $k$ for which every $n \times n$ bipartite graph with maximum degree $\Delta$ in one of the parts has a bi-hole of size $k$. Determining $f(n, \Delta)$ is thus the bipartite analogue of finding the largest independent set in graphs with a given number of vertices and bounded maximum degree. It has connections to the bipartite version of the Erdös--Hajnal conjecture, bipartite Ramsey numbers, and the Zarankiewicz problem. Our main result determines the asymptotic behavior of $f(n, \Delta)$. More precisely, we show that for large but fixed $\Delta$ and $n$ sufficiently large, $f(n, \Delta) = \Theta(\frac{\log \Delta}{\Delta} n)$. We further address more specific regimes of $\Delta$, especially when $\Delta$ is a small fixed constant. In particular, we determine $f(n, 2)$ exactly and obtain bounds for $f(n, 3)$, though determining the precise value of $f(n, 3)$ is still open.


中文翻译:

最大度有界图中的二部独立数

SIAM 离散数学杂志,第 35 卷,第 2 期,第 1136-1148 页,2021 年 1 月。
我们在二部图中考虑一个自然但似乎没有太多研究的极值问题。具有固定二分的二分图 $G$ 中大小为 $t$ 的双孔是一个独立的集合,每个部分恰好有 $t$ 个顶点;换句话说,它是 $G$ 的二部补集中 $K_{t, t}$ 的副本。令 $f(n, \Delta)$ 是最大的 $k$,其中每个部分中具有最大度数 $\Delta$ 的每个 $n \times n$ 二部图都有一个大小为 $k$ 的双孔。因此,确定 $f(n, \Delta)$ 是在具有给定顶点数和有界最大度数的图中找到最大独立集的二分类比。它与 Erdös--Hajnal 猜想的二分版本、二分 Ramsey 数和 Zarankiewicz 问题有关。我们的主要结果决定了 $f(n, \Delta)$ 的渐近行为。更确切地说,我们表明,对于大但固定的 $\Delta$ 和足够大的 $n$,$f(n, \Delta) = \Theta(\frac{\log \Delta}{\Delta} n)$。我们进一步讨论了更具体的 $\Delta$ 机制,特别是当 $\Delta$ 是一个小的固定常数时。特别是,我们准确地确定了 $f(n, 2)$ 并获得了 $f(n, 3)$ 的界限,尽管确定 $f(n, 3)$ 的精确值仍然是开放的。
更新日期:2021-06-01
down
wechat
bug