当前位置: X-MOL 学术J. Struct. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deformation mechanisms of granulite-facies mafic shear zones from hole U1473A, Atlantis Bank, Southwest Indian Ridge (IODP Expedition 360)
Journal of Structural Geology ( IF 2.6 ) Pub Date : 2021-06-01 , DOI: 10.1016/j.jsg.2021.104380
Rhander Taufner , Gustavo Viegas , Frederico Meira Faleiros , Paulo Castellan , Raylline Silva

Lower-crustal shear zones from hole U1473A (IODP Expedition 360) were studied via quantitative microstructural analysis and thermodynamic modelling to constrain deformation conditions during detachment faulting. Porphyroclasts of clinopyroxene and orthopyroxene, plagioclase and olivine are included in a fine-grained, polyphase matrix that contains plagioclase-rich layers. Microfractures occur in orthopyroxene, and core-mantle structures are common in all porphyroclasts. Crystallographic fabrics in clinopyroxene clasts indicate activation of (010)[001] slip system, whereas the rimming neoblasts show activity of both (010)[001] and (001)[100]. Fabrics of plagioclase-rich layers suggest the activation of the (010)[100] slip system. Phase mixing and weak crystallographic fabrics in the polyphase matrix point to oriented-growth during diffusion-assisted grain boundary sliding. Thermodynamic modelling indicates that the gabbroic shear zones formed at ~900–920 °C and 2.2–2.7 kbar, under melt-present conditions, and re-equilibrated down to 835 °C during exhumation, as indicated by hornblende–plagioclase thermometry. Our results suggest that deformation in the lower parts of Atlantis Bank was accommodated by a combination of brittle fragmentation and viscous flow during in-situ melt-consumption back-reaction. Such mechanisms effectively resulted in strain localisation in fine-grained, polyphase shear zones that contributed to the weakening of the ocean crust during detachment faulting and subsequent exhumation of the Atlantis Bank core complex.



中文翻译:

西南印度洋脊亚特兰蒂斯银行 U1473A 孔麻粒岩相镁铁质剪切带的变形机制(IODP Expedition 360)

通过定量显微结构分析和热力学建模研究了来自 U1473A 孔(IODP 远征 360)的下地壳剪切带,以限制脱离断层过程中的变形条件。单斜辉石和斜辉石、斜长石和橄榄石的卟啉碎屑包含在含有富含斜长石的细粒多相基质中。微裂缝发生在斜方辉石中,核-幔结构在所有斑岩碎屑中都很常见。单斜辉石碎屑中的晶体结构表明 (010)[001] 滑动系统的激活,而边缘新生细胞显示出 (010)[001] 和 (001)[100] 的活性。富含斜长石层的织物表明 (010)[100] 滑移系统被激活。多相基体中的相混合和弱晶体结构指向扩散辅助晶界滑动过程中的定向生长。热力学模型表明,辉长岩剪切带在约 900–920 °C 和 2.2–2.7 kbar 下形成,在熔融条件下,并在折返过程中重新平衡至 835 °C,如角闪石-斜长石温度测定所示。我们的结果表明,在原位熔体消耗反反应期间,亚特兰蒂斯银行下部的变形是由脆性碎裂和粘性流的组合所调节的。这种机制有效地导致了细粒多相剪切带中的应变局部化,这有助于在分离断层和随后亚特兰蒂斯银行核心复合体的剥脱过程中削弱海洋地壳。热力学模型表明,辉长岩剪切带在约 900–920 °C 和 2.2–2.7 kbar 下形成,在熔融条件下,并在折返过程中重新平衡至 835 °C,如角闪石-斜长石温度测定所示。我们的研究结果表明,在原位熔体消耗逆反应期间,亚特兰蒂斯银行下部的变形是由脆性碎裂和粘性流的组合所调节的。这种机制有效地导致了细粒多相剪切带中的应变局部化,这有助于在分离断层和随后亚特兰蒂斯银行核心复合体的剥脱过程中削弱海洋地壳。热力学模型表明,辉长岩剪切带在约 900–920 °C 和 2.2–2.7 kbar 下形成,在熔融条件下,并在折返过程中重新平衡至 835 °C,如角闪石-斜长石温度测定所示。我们的研究结果表明,在原位熔体消耗逆反应期间,亚特兰蒂斯银行下部的变形是由脆性碎裂和粘性流的组合所调节的。这种机制有效地导致了细粒多相剪切带中的应变局部化,这有助于在分离断层和随后亚特兰蒂斯银行核心复合体的剥脱过程中削弱海洋地壳。如角闪石-斜长石测温法所示。我们的研究结果表明,在原位熔体消耗逆反应期间,亚特兰蒂斯银行下部的变形是由脆性碎裂和粘性流的组合所调节的。这种机制有效地导致了细粒多相剪切带中的应变局部化,这有助于在分离断层和随后亚特兰蒂斯银行核心复合体的剥脱过程中削弱海洋地壳。如角闪石-斜长石测温法所示。我们的研究结果表明,在原位熔体消耗逆反应期间,亚特兰蒂斯银行下部的变形是由脆性碎裂和粘性流的组合所调节的。这种机制有效地导致了细粒多相剪切带中的应变局部化,这有助于在分离断层和随后亚特兰蒂斯银行核心复合体的剥脱过程中削弱海洋地壳。

更新日期:2021-06-05
down
wechat
bug