当前位置: X-MOL 学术Precis. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of a pressurized internal cooling milling cutter and its machining performance assessment
Precision Engineering ( IF 3.5 ) Pub Date : 2021-05-31 , DOI: 10.1016/j.precisioneng.2021.05.010
Ruitao Peng , Jiachen Liu , Meiliang Chen , Jiawei Tong , Linfeng Zhao

In view of the serious problem of milling heat in milling nickel-based superalloys Inconel 718, this paper investigates the heat transfer performance of internal cooling in end milling Inconel 718, and the superiority of internal cooling milling cutter's heat exchange ability during processing is explored. The flow field characteristics of cutting fluid and milling temperature are studied by Computational Fluid Dynamics (CFD) and Finite Element Method (FEM). Compared with external flood cooling, the principle of internal cooling with excellent heat transfer performance is explained and the influence of coolant pressure on lubrication performance is analyzed. Experiments for end milling of Inconel 718 under different cutting speeds and cooling conditions have been carried out. The results indicate that the simulated and measured temperatures showed an acceptable agreement. The internal cooling has better heat transfer performance compared with flood cooling. With the increase of coolant pressure, the heat exchange efficiency is gradually enhanced. When the coolant pressure rises from 2 bar to 10 bar, the milling temperature at the measured point inside the workpiece reduces by 27.55 °C, the surface roughness reduces by 12.0%, the surface residual compressive stress increases by 68.37 MPa and better surface morphology is obtained. Besides, in the experimental range, with the increase of cutting speed, milling temperature increased, the pile-up effect on the sides of scratching was weakened and better machined surface integrity was found.



中文翻译:

加压内冷铣刀的研制及其加工性能评价

针对铣削镍基高温合金Inconel 718时铣削热的严重问题,本文研究了铣削Inconel 718中内冷的传热性能,探讨了内冷铣刀在加工过程中换热能力的优越性。通过计算流体动力学(CFD)和有限元方法(FEM)研究切削液和铣削温度的流场特性。与外溢式冷却相比,阐述了内冷却具有优良传热性能的原理,分析了冷却液压力对润滑性能的影响。对 Inconel 718 在不同切削速度和冷却条件下的端铣进行了实验。结果表明模拟和测量的温度显示出可接受的一致性。与泛冷相比,内冷具有更好的传热性能。随着冷却液压力的增加,换热效率逐渐提高。当冷却液压力由 2 bar 升至 10 bar 时,工件内部测点处铣削温度降低 27.55 ℃,表面粗糙度降低 12.0%,表面残余压应力增加 68.37 MPa,表面形貌较好。获得。此外,在实验范围内,随着切削速度的增加,铣削温度的升高,划痕侧面的堆积效应减弱,加工表面完整性更好。与泛冷相比,内冷具有更好的传热性能。随着冷却液压力的增加,换热效率逐渐提高。当冷却液压力由 2 bar 升至 10 bar 时,工件内部测点处铣削温度降低 27.55 ℃,表面粗糙度降低 12.0%,表面残余压应力增加 68.37 MPa,表面形貌较好。获得。此外,在实验范围内,随着切削速度的增加,铣削温度的升高,划痕侧面的堆积效应减弱,加工表面完整性更好。与泛冷相比,内冷具有更好的传热性能。随着冷却液压力的增加,换热效率逐渐提高。当冷却液压力由 2 bar 升至 10 bar 时,工件内部测点处铣削温度降低 27.55 ℃,表面粗糙度降低 12.0%,表面残余压应力增加 68.37 MPa,表面形貌较好。获得。此外,在实验范围内,随着切削速度的增加,铣削温度的升高,划痕侧面的堆积效应减弱,加工表面完整性更好。工件内部测点铣削温度降低27.55℃,表面粗糙度降低12.0%,表面残余压应力提高68.37 MPa,获得更好的表面形貌。此外,在实验范围内,随着切削速度的增加,铣削温度的升高,划痕侧面的堆积效应减弱,加工表面完整性更好。工件内部测点铣削温度降低27.55℃,表面粗糙度降低12.0%,表面残余压应力提高68.37 MPa,获得更好的表面形貌。此外,在实验范围内,随着切削速度的增加,铣削温度的升高,划痕侧面的堆积效应减弱,加工表面完整性更好。

更新日期:2021-06-04
down
wechat
bug