当前位置: X-MOL 学术Infrared Phys. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling and analysis of infrared radiation dynamic characteristics for space micromotion target recognition
Infrared Physics & Technology ( IF 3.1 ) Pub Date : 2021-05-31 , DOI: 10.1016/j.infrared.2021.103795
Hao Zhang , Peng Rao , Hui Xia , Dongshan Weng , Xin Chen , Yejin Li

The infrared radiation characteristics under micromotion provide an important parameter for space target recognition. To solve the problem of space infrared target recognition over long distances, an infrared radiation model of space target is established by comprehensively considering the target flight scenario, temperature change, target shape and size, and micromotion factor. First, the micromotion model is established, and the multi-target surface is meshed by uniformly sampling the three-dimensional space. Next, the temperature field model of the target surface is established by considering the rapid change in the radiation angle coefficient of the target facets. Then, according to the dynamic angle relationship among the target facet position, radiation vector, and line of sight, the infrared radiation model of the target is established. The effects of micromotion on the surface facet temperature, projected area, and infrared radiation of the target are simulated and analyzed. The experimental results indicate that the temperature range of all targets is 260–323 K under the set parameters and decide the trend of radiation intensity, and the micromotion causes periodic fluctuation of the facets temperature, projected area, and radiation intensity. The shape of the micromotion target and micromotion angle jointly affect the infrared radiation amplitude in the same line of sight observation. The infrared radiation data of multiple space targets in any flight scene can be obtained using the model, which provides support for target detection, tracking, recognition and the design of parameters of infrared detectors.



中文翻译:

空间微动目标识别红外辐射动态特性建模与分析

微动下的红外辐射特性为空间目标识别提供了重要参数。为解决远距离空间红外目标识别问题,综合考虑目标飞行场景、温度变化、目标形状和尺寸、微动因素,建立空间目标红外辐射模型。首先建立微动模型,通过对三维空间进行均匀采样,对多目标曲面进行网格剖分。接下来,通过考虑目标面辐射角系数的快速变化,建立目标面的温度场模型。然后,根据目标面位置、辐射矢量和视线之间的动态角度关系,建立目标的红外辐射模型。模拟分析了微动对目标表面温度、投影面积和红外辐射的影响。实验结果表明,在设定的参数下,所有目标的温度范围为260-323 K,决定了辐射强度的趋势,微动引起小平面温度、投影面积和辐射强度的周期性波动。微动目标的形状和微动角度共同影响同一视线观测中的红外辐射幅值。使用该模型可以获得任意飞行场景中多个空间目标的红外辐射数据,为目标检测、跟踪、识别和红外探测器参数设计提供支持。并对目标的红外辐射进行仿真分析。实验结果表明,在设定的参数下,所有目标的温度范围为260-323 K,决定了辐射强度的趋势,微动引起小平面温度、投影面积和辐射强度的周期性波动。微动目标的形状和微动角度共同影响同一视线观测中的红外辐射幅值。使用该模型可以获得任意飞行场景中多个空间目标的红外辐射数据,为目标检测、跟踪、识别和红外探测器参数设计提供支持。并对目标的红外辐射进行仿真分析。实验结果表明,在设定的参数下,所有目标的温度范围为260-323 K,决定了辐射强度的趋势,微动引起小平面温度、投影面积和辐射强度的周期性波动。微动目标的形状和微动角度共同影响同一视线观测中的红外辐射幅值。使用该模型可以获得任意飞行场景中多个空间目标的红外辐射数据,为目标检测、跟踪、识别和红外探测器参数设计提供支持。实验结果表明,在设定的参数下,所有目标的温度范围为260-323 K,决定了辐射强度的趋势,微动引起小平面温度、投影面积和辐射强度的周期性波动。微动目标的形状和微动角度共同影响同一视线观测中的红外辐射幅值。使用该模型可以获得任意飞行场景中多个空间目标的红外辐射数据,为目标检测、跟踪、识别和红外探测器参数设计提供支持。实验结果表明,在设定的参数下,所有目标的温度范围为260-323 K,决定了辐射强度的趋势,微动引起小平面温度、投影面积和辐射强度的周期性波动。微动目标的形状和微动角度共同影响同一视线观测中的红外辐射幅值。使用该模型可以获得任意飞行场景中多个空间目标的红外辐射数据,为目标检测、跟踪、识别和红外探测器参数设计提供支持。微动目标的形状和微动角度共同影响同一视线观测中的红外辐射幅值。使用该模型可以获得任意飞行场景中多个空间目标的红外辐射数据,为目标检测、跟踪、识别和红外探测器参数设计提供支持。微动目标的形状和微动角度共同影响同一视线观测中的红外辐射幅值。使用该模型可以获得任意飞行场景中多个空间目标的红外辐射数据,为目标检测、跟踪、识别和红外探测器参数设计提供支持。

更新日期:2021-06-17
down
wechat
bug