当前位置: X-MOL 学术Microfluid. Nanofluid. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Focused ion beam milling based formation of nanochannels in silicon-glass microfluidic chips for the study of ion transport
Microfluidics and Nanofluidics ( IF 2.3 ) Pub Date : 2021-05-31 , DOI: 10.1007/s10404-021-02450-x
Denis Lebedev , Grigory Malyshev , Ilya Ryzhkov , Alexey Mozharov , Konstantin Shugurov , Vladislav Sharov , Maxim Panov , Ilya Tumkin , Polina Afonicheva , Anatoly Evstrapov , Anton Bukatin , Ivan Mukhin

Nowadays nanofluidic devices have a great potential in biosensing and DNA sequencing applications. This work is aimed at development of the technique for fabrication of arrays of nanochannels in silicon-glass chips by focused ion beam milling. The use of lithography with charged particles (electrons and ions) paves the way for the fabrication of micro- and nanochannels and pores as well as functional nanostructures of a more complex shape in nanofluidic devices. In this study, a technique for fabrication of microfluidic chips with a system of nanochannels connecting two independent volumes (2 half cells) was developed. It was shown experimentally that the focused ion beam etching time has an influence on both the width of the created nanochannels and their depth. We suggested using anodic bonding of a silicon wafer with the net of micro- and nanochannels with a glass plate for encapsulation of such devices that provide their long lifetime of microfluidic devices. To determine the functionality of the produced devices we studied the ionic conductivity of the produced nanochannels experimentally and using a theoretical approach. Analyzing the results, we determined the effective diameter of the nanochannels and the surface charge density inside the channel which were 20 nm and 1.5 mC/m\({}^2\), respectively. The proposed technique allows to create ensembles of channels with a predefined width and depth. Such systems can find wide application in studies of the transport phenomena of both ions and various molecules in nanofluidic devices.



中文翻译:

基于聚焦离子束铣削在硅玻璃微流控芯片中形成纳米通道以研究离子传输

如今,纳米流体设备在生物传感和 DNA 测序应用中具有巨大的潜力。这项工作旨在开发通过聚焦离子束铣削在硅玻璃芯片中制造纳米通道阵列的技术。使用带电粒子(电子和离子)的光刻为在纳米流体装置中制造微米和纳米通道和孔以及更复杂形状的功能纳米结构铺平了道路。在这项研究中,开发了一种用于制造具有连接两个独立体积(2 个半电池)的纳米通道系统的微流控芯片的技术。实验表明,聚焦离子束蚀刻时间对产生的纳米通道的宽度和深度都有影响。我们建议使用带有微通道和纳米通道网的硅晶片与玻璃板的阳极键合,用于封装此类设备,从而提供微流体设备的长寿命。为了确定生产的设备的功能,我们通过实验和理论方法研究了生产的纳米通道的离子电导率。分析结果,我们确定了纳米通道的有效直径和通道内的表面电荷密度,分别为 20 nm 和 1.5 mC/m\({}^2\),分别。所提出的技术允许创建具有预定义宽度和深度的通道集合。这种系统可以广泛应用于研究纳米流体装置中离子和各种分子的传输现象。

更新日期:2021-05-31
down
wechat
bug