当前位置: X-MOL 学术Microsc. Res. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of microstructure and dissimilar materials connection patterns of mantis shrimp saddle
Microscopy Research and Technique ( IF 2.0 ) Pub Date : 2021-05-28 , DOI: 10.1002/jemt.23763
Qian Zhao 1 , Yanjiao Chang 1, 2 , Zhaohua Lin 1, 2 , Zhihui Zhang 1 , Zhiwu Han 1 , Luquan Ren 1
Affiliation  

The microstructure and dissimilar materials connection patterns of mantis shrimp saddle were investigated. The outer layer with layered helical structure and inner layer with slablike laminae structure constructed the microstructure characteristics of saddle. The merus and membrane were characterized by layered structure. The lamina of saddle connected the corresponding lamina in merus and membrane, building the continuous and smooth coupling connection patterns. The entitative “hard-hard” and “hard-soft” transitions of dissimilar materials at micro level enhanced the steady transmit of driven force. The saddle exhibited high mechanical strength. With the increase of in-situ tensile displacement, the number of fractured fragments on saddle outer layer surface increased, which subjected to tensile load and defused the damage in the form of mineralized surface fragmentation. In the inner part of saddle, the fracture of mineralized laminae and crack deflection mechanisms bore the tensile load influence. The combination of microstructure with high mechanical strength and continues micro lamina connection endowed the concise dissimilar materials connection and efficient elastic energy storage property of saddle, which can be treated as the bionic models for design and preparation of fiber reinforced resin composite, hyperelastic material and so on.

中文翻译:

螳螂虾鞍的微观结构及异种材料连接方式的研究

研究了螳螂虾鞍座的微观结构和异种材料连接方式。外层为层状螺旋结构,内层为板状层状结构,构成了鞍座的微观结构特征。梅氏和膜的特点是分层结构。鞍的椎板连接相应的椎板和膜中的椎板,构建连续平滑的耦合连接模式。异种材料在微观层面的实体“硬-硬”和“硬-软”转变增强了驱动力的稳定传递。鞍座表现出高机械强度。随着原位拉伸位移的增加,鞍座外层表面的断裂碎片数量增加,其承受拉伸载荷并以矿化表面碎裂的形式消除损伤。在鞍座内部,矿化层的断裂和裂纹偏转机制承受了拉伸载荷的影响。具有高机械强度的微观结构和连续的微薄层连接相结合,赋予了鞍座简洁的异种材料连接和高效的弹性储能性能,可作为纤维增强树脂复合材料、超弹性材料等设计和制备的仿生模型。在。
更新日期:2021-05-28
down
wechat
bug