当前位置: X-MOL 学术Corros. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigations of the intrinsic corrosion and hydrogen susceptibility of metals and alloys using density functional theory
Corrosion Reviews ( IF 3.2 ) Pub Date : 2021-06-01 , DOI: 10.1515/corrrev-2020-0094
Christopher D. Taylor 1 , Huibin Ke 2, 3
Affiliation  

Mechanisms for materials degradation are usually inferred from electrochemical measurements and characterization performed before, during, and after exposure testing and/or failure analysis of service materials. Predicting corrosion and other materials degradation modes, such as hydrogen-assisted cracking, from first-principles has generally been limited to thermodynamic predictions from Pourbaix or Ellingham diagrams and the Galvanic series. Using electronic structure calculations, modern first-principles methods can predict ab initio the key rate-controlling processes for corrosion and hydrogen susceptibility as a function of pH, potential, and solution chemistry, and materials composition and microstructure. Herein we review density functional theory (DFT) approaches for studying the electrochemical reactions occurring on fresh metal and alloy surfaces related to environmentally assisted cracking and localized corrosion/pitting. Predicted changes in surface chemistry as a function of the environment were correlated against experimental crack growth rate data obtained for alloys 718, 725, and pipeline steel under electrochemical control. We also review the application of the method to study the effects of alloying on the chloride susceptibility of stainless steels and Ni–Cr-based corrosion-resistant alloys. Perspectives for improving the model are given, and extending it to future fields of application in corrosion science and engineering.

中文翻译:

使用密度泛函理论研究金属和合金的固有腐蚀和氢敏感性

材料降解的机制通常是从使用材料的暴露测试和/或失效分析之前、期间和之后进行的电化学测量和表征推断出来的。从第一原理预测腐蚀和其他材料降解模式(例如氢辅助开裂)通常仅限于根据Pourbaix或Ellingham图和Galvanic系列进行的热力学预测。使用电子结构计算,现代第一性原理方法可以从头开始预测腐蚀和氢敏感性的关键速率控制过程,作为 pH、电位和溶液化学、材料成分和微观结构的函数。在此,我们回顾了密度泛函理论 (DFT) 方法,用于研究与环境辅助开裂和局部腐蚀/点蚀相关的新鲜金属和合金表面上发生的电化学反应。作为环境函数的表面化学预测变化与在电化学控制下获得的合金 718、725 和管线钢的实验裂纹扩展速率数据相关联。我们还回顾了该方法在研究合金化对不锈钢和 Ni-Cr 基耐蚀合金的氯化物敏感性影响方面的应用。给出了改进模型的前景,并将其扩展到腐蚀科学和工程的未来应用领域。作为环境函数的表面化学预测变化与在电化学控制下获得的合金 718、725 和管线钢的实验裂纹扩展速率数据相关联。我们还回顾了该方法在研究合金化对不锈钢和 Ni-Cr 基耐蚀合金的氯化物敏感性影响方面的应用。给出了改进模型的前景,并将其扩展到腐蚀科学和工程的未来应用领域。作为环境函数的表面化学预测变化与在电化学控制下获得的合金 718、725 和管线钢的实验裂纹扩展速率数据相关联。我们还回顾了该方法在研究合金化对不锈钢和 Ni-Cr 基耐蚀合金的氯化物敏感性影响方面的应用。给出了改进模型的前景,并将其扩展到腐蚀科学和工程的未来应用领域。我们还回顾了该方法在研究合金化对不锈钢和 Ni-Cr 基耐蚀合金的氯化物敏感性影响方面的应用。给出了改进模型的前景,并将其扩展到腐蚀科学和工程的未来应用领域。我们还回顾了该方法在研究合金化对不锈钢和 Ni-Cr 基耐蚀合金的氯化物敏感性影响方面的应用。给出了改进模型的前景,并将其扩展到腐蚀科学和工程的未来应用领域。
更新日期:2021-05-30
down
wechat
bug