当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cavitation dynamics and flow aggressiveness in ultrasonic cavitation erosion
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2021-05-29 , DOI: 10.1016/j.ijmecsci.2021.106545
Jianhua Du , Fengjun Chen

The mechanisms of cavitation erosion have been the subject of numerous studies, but the cavitation dynamics and flow aggressiveness thereby produced are less known. We develop a new numerical model to capture the cavity evolution and pressure pulsation, which are related to cavitation erosion. The source term in the interphase mass transfer model is obtained from Rayleigh–Plesset equation under the acoustic field. Mathematical closure is achieved by the temperature-dependent Tait equations of state to apply to the cavitation. The comparison with the measurement results of ultrasonic cavitation shows that the model has a good predictive ability in cavity evolution, cavity volume and pressure pulsation. The surface erosion pattern is attributed to concentrated pressure. Given the shielding effect of the central bubble, the pressure is concentrated on the edge, resulting in an annular region with the greatest depth. The cavity characteristics are gap-dependent. When the gap height is 1.0 mm, cavitation erosion is the most serious. The size of the erosion area is determined by the maximum bubble number density on the sample surface.



中文翻译:

超声空化侵蚀中的空化动力学和流动侵蚀性

空化侵蚀的机制已成为众多研究的主题,但由此产生的空化动力学和流动侵蚀性鲜为人知。我们开发了一种新的数值模型来捕捉与空化侵蚀相关的空腔演变和压力脉动。相间传质模型中的源项是从声场下的 Rayleigh-Plesset 方程获得的。数学上的闭合是通过应用于空化的与温度相关的 Tait 状态方程来实现的。与超声空化测量结果对比表明,该模型在腔演化、腔体积和压力脉动方面具有良好的预测能力。表面侵蚀模式归因于集中压力。鉴于中央气泡的屏蔽作用,压力集中在边缘,从而形成一个具有最大深度的环形区域。空腔特性取决于间隙。当间隙高度为 1.0 mm 时,气蚀最为严重。侵蚀区域的大小由样品表面的最大气泡数密度决定。

更新日期:2021-06-07
down
wechat
bug