当前位置: X-MOL 学术J. Phys. Chem. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of an advanced Takayanagi equation for the electrical conductivity of carbon nanotube-reinforced polymer nanocomposites
Journal of Physics and Chemistry of Solids ( IF 4.3 ) Pub Date : 2021-05-28 , DOI: 10.1016/j.jpcs.2021.110191
Yasser Zare , Kyong Yop Rhee

Currently available models for the conductivity of nanocomposites commonly disregard the roles of interphase and tunneling sections. Here, the interphase and tunneling parts are considered to yield an expanded Takayanagi equation to express a model for the electrical conductivity of carbon nanotubes (CNTs)-reinforced polymer nanocomposites (PCNTs). Invoking the interphase section, the operative filler loading and percolation onset are shown to control the volume fraction of networks. Application of the advanced model allows calculation of the conductivity over disparate ranges of various factors and estimation of the conductivity for real specimens. Experimental data for several examples show good matching with the predictions. Straighter CNTs, a dense interphase region, large nets, large tunneling diameter, low polymer tunneling resistivity, and short tunnels give rise to high conductivity. Conductivity is increased to 3.5 S/m at a CNT radius (R) of 5 nm and a CNT length of 20 μm, whereas an insulating sample is observed at R > 8 nm. A percolation onset (ϕp) below 0.0012 results in a conductivity of 0.13 S/m, but it decreases to 0.1 S/m at ϕp> 0.0044. A high CNT volume fraction of 0.02 raises the conductivity to 0.35 S/m, whereas a low CNT volume fraction of 0.005 lowers it to 0.05 S/m.



中文翻译:

碳纳米管增强聚合物纳米复合材料电导率的高级 Takayanagi 方程的发展

目前可用的纳米复合材料电导率模型通常忽略界面和隧道部分的作用。在这里,界面和隧道部分被认为产生了扩展的 Takayanagi 方程,以表达碳纳米管 (CNT) 增强聚合物纳米复合材料 (PCNT) 的电导率模型。调用相间部分,显示可操作的填料加载和渗透开始以控制网络的体积分数。高级模型的应用允许在各种因素的不同范围内计算电导率,并估计真实样本的电导率。几个例子的实验数据显示出与预测的良好匹配。更直的 CNT、致密的相间区域、大网、大隧道直径、低聚合物隧道电阻率、短隧道产生高电导率。在 CNT 半径处,电导率增加到 3.5 S/m (R ) 为 5 nm,CNT 长度为 20 μm,而在R  > 8 nm 处观察到绝缘样品。渗流发作 (φ) 低于 0.0012 导致电导率为 0.13 S/m,但在 φ> 0.0044。0.02 的高 CNT 体积分数将电导率提高到 0.35 S/m,而 0.005 的低 CNT 体积分数将其降低到 0.05 S/m。

更新日期:2021-06-02
down
wechat
bug