当前位置: X-MOL 学术Nat. Protoc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hi-CO: 3D genome structure analysis with nucleosome resolution
Nature Protocols ( IF 13.1 ) Pub Date : 2021-05-28 , DOI: 10.1038/s41596-021-00543-z
Masae Ohno 1, 2 , Tadashi Ando 3, 4 , David G Priest 1, 5 , Yuichi Taniguchi 1, 2, 6
Affiliation  

The nucleosome is the basic organizational unit of the genome. The folding structure of nucleosomes is closely related to genome functions, and has been reported to be in dynamic interplay with binding of various nuclear proteins to genomic loci. Here, we describe our high-throughput chromosome conformation capture with nucleosome orientation (Hi-CO) technology to derive 3D nucleosome positions with their orientations at every genomic locus in the nucleus. This technology consists of an experimental procedure for nucleosome proximity analysis and a computational procedure for 3D modeling. The experimental procedure is based on an improved method of high-throughput chromosome conformation capture (Hi-C) analysis. Whereas conventional Hi-C allows spatial proximity analysis among genomic loci with 1–10 kbp resolution, our Hi-CO allows proximity analysis among DNA entry or exit points at every nucleosome locus. This analysis is realized by carrying out ligations among the entry/exit points in every nucleosome in a micrococcal-nuclease-fragmented genome, and by quantifying frequencies of ligation products with next-generation sequencing. Our protocol has enabled this analysis by cleanly excluding unwanted non-ligation products that are abundant owing to the frequent genome fragmentation by micrococcal nuclease. The computational procedure is based on simulated annealing-molecular dynamics, which allows determination of optimized 3D positions and orientations of every nucleosome that satisfies the proximity ligation data sufficiently well. Typically, examination of the Saccharomyces cerevisiae genome with 130 million sequencing reads facilitates analysis of a total of 66,360 nucleosome loci with 6.8 nm resolution. The technique requires 2–3 weeks for sequencing library preparation and 2 weeks for simulation.



中文翻译:

Hi-CO:核小体分辨率的 3D 基因组结构分析

核小体是基因组的基本组织单位。核小体的折叠结构与基因组功能密切相关,据报道与各种核蛋白与基因组位点的结合存在动态相互作用。在这里,我们描述了我们的高通量染色体构象捕获与核小体定向 (Hi-CO) 技术,以得出 3D 核小体位置及其在细胞核中每个基因组位点的方向。该技术包括用于核小体邻近分析的实验程序和用于 3D 建模的计算程序。实验程序基于改进的高通量染色体构象捕获 (Hi-C) 分析方法。传统的 Hi-C 允许以 1-10 kbp 分辨率对基因组位点进行空间邻近分析,我们的 Hi-CO 允许在每个核小体基因座的 DNA 入口或出口点之间进行邻近分析。这种分析是通过在微球菌核酸酶片段化基因组中每个核小体的入口/出口点之间进行连接,并通过下一代测序量化连接产物的频率来实现的。我们的协议通过干净地排除了由于微球菌核酸酶频繁基因组片段化而丰富的不需要的非结扎产物,从而实现了这种分析。计算过程基于模拟退火分子动力学,它允许确定每个核小体的优化 3D 位置和方向,充分满足邻近连接数据。通常情况下,检查 这种分析是通过在微球菌核酸酶片段化基因组中每个核小体的入口/出口点之间进行连接,并通过下一代测序量化连接产物的频率来实现的。我们的协议通过干净地排除了由于微球菌核酸酶频繁基因组片段化而丰富的不需要的非结扎产物,从而实现了这种分析。计算过程基于模拟退火分子动力学,它允许确定每个核小体的优化 3D 位置和方向,充分满足邻近连接数据。通常情况下,检查 这种分析是通过在微球菌核酸酶片段化基因组中每个核小体的入口/出口点之间进行连接,并通过下一代测序量化连接产物的频率来实现的。我们的协议通过干净地排除了由于微球菌核酸酶频繁基因组片段化而丰富的不需要的非结扎产物,从而实现了这种分析。计算过程基于模拟退火分子动力学,它允许确定每个核小体的优化 3D 位置和方向,充分满足邻近连接数据。通常情况下,检查 并通过新一代测序量化连接产物的频率。我们的协议通过干净地排除了由于微球菌核酸酶频繁基因组片段化而丰富的不需要的非结扎产物,从而实现了这种分析。计算过程基于模拟退火分子动力学,它允许确定每个核小体的优化 3D 位置和方向,充分满足邻近连接数据。通常情况下,检查 并通过新一代测序量化连接产物的频率。我们的协议通过干净地排除了由于微球菌核酸酶频繁基因组片段化而丰富的不需要的非结扎产物,从而实现了这种分析。计算过程基于模拟退火分子动力学,它允许确定每个核小体的优化 3D 位置和方向,充分满足邻近连接数据。通常情况下,检查 这允许确定充分满足邻近连接数据的每个核小体的优化 3D 位置和方向。通常情况下,检查 这允许确定充分满足邻近连接数据的每个核小体的优化 3D 位置和方向。通常情况下,检查具有 1.3 亿个测序读数的酿酒酵母基因组有助于以 6.8 nm 的分辨率分析总共 66,360 个核小体位点。该技术需要 2-3 周的测序文库制备和 2 周的模拟时间。

更新日期:2021-05-28
down
wechat
bug