当前位置: X-MOL 学术IEEE Micro › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Virtual Logical Qubits: A Compact Architecture for Fault-Tolerant Quantum Computing
IEEE Micro ( IF 3.6 ) Pub Date : 2021-04-13 , DOI: 10.1109/mm.2021.3072789
Jonathan M. Baker 1 , Casey Duckering 1 , David I. Schuster 1 , Frederic T. Chong 1
Affiliation  

Fault-tolerant quantum computing is required to execute many of the most promising quantum applications. In recent years, numerous error correcting codes, such as the surface code, have emerged which are well suited for current and future limited connectivity 2-D devices. We find quantum memory, particularly resonant cavities with transmon qubits arranged in a 2.5-D architecture, can efficiently implement surface codes with around 20× fewer transmons via this work. We virtualize 2-D memory addresses by storing the code in layers of qubit memories connected to each transmon. Distributing logical qubits across many memories has minimal impact on fault tolerance and results in substantially more efficient logical operations. Virtualized logical qubit (VLQ) systems can achieve fault tolerance comparable to conventional 2-D transmon-only architectures while putting within reach a proof-of-concept experimental demonstration of around ten logical qubits, requiring only 11 transmons and 9 attached cavities.

中文翻译:

虚拟逻辑量子位:用于容错量子计算的紧凑架构

执行许多最有前途的量子应用程序需要容错量子计算。近年来,出现了许多纠错码,例如表面码,它们非常适合当前和未来的有限连接二维设备。我们发现量子存储器,特别是具有以 2.5-D 架构排列的 transmon 量子位的谐振腔,可以通过这项工作有效地实现表面代码,而 transmons 减少了大约 20 倍。我们通过将代码存储在连接到每个 transmon 的量子位存储器层中来虚拟化 2-D 存储器地址。将逻辑量子位分布在多个存储器上对容错的影响最小,并导致逻辑操作的效率显着提高。
更新日期:2021-05-28
down
wechat
bug