当前位置: X-MOL 学术Aircr. Eng. Aerosp. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flow control method by applying flexible shells procedure in transonic flow
Aircraft Engineering and Aerospace Technology ( IF 1.2 ) Pub Date : 2021-05-28 , DOI: 10.1108/aeat-03-2020-0046
M.R. Saber , M.H. Djavareshkian

Purpose

In the present research, the effect of the flexible shells method in unsteady viscous flow around airfoil has been studied. In the presented algorithm, due to the interaction of the aerodynamic forces and the structural stiffness (fluid-structural interaction), a geometrical deformation as the bump is created in the area where the shock occurs. This bump causes instead of compressive waves, a series of expansion waves that produce less drag and also improve the aerodynamic performance to be formed. The purpose of this paper is to reduce wave drag throughout the flight range. By using this method, we can be more effective than recent methods throughout the flight because if there is a shock, a bump will form in that area, and if the shock does not occur, the shape of the airfoil will not change.

Design/methodology/approach

In this simulation pressure-based procedure to solve the Navier-Stokes equation with collocated finite volume formulation has been developed. For this purpose, a high-resolution scheme for fluid and structure simulation in transonic flows with an arbitrary Lagrangian-Eulerian method is considered. To simulate Navier-Stokes equations large eddy simulation model for compressible flow is used.

Findings

A new concept has been defined to reduce the transonic flow drag. To reduce drag force and increase the performance of airfoil in transonic flow, the shell can be considered flexible in the area of shock on the airfoil surface. This method refers to the use of smart materials in the aircraft wing shell.

Originality/value

The value of the paper is to develop a new approach to improve the aerodynamic performance and reduce drag force and the efficiency of the method throughout the flight. It is noticeable that the new algorithm can detect the shock region automatically; this point was disregarded in the previous studies. It is hoped that this research will open a door to significantly enhance transonic airfoil performance.



中文翻译:

跨音速流动中应用柔性壳程序的流动控制方法

目的

在目前的研究中,研究了柔性壳法对翼型周围非定常粘性流动的影响。在所提出的算法中,由于空气动力和结构刚度(流体-结构相互作用)的相互作用,在发生冲击的区域会产生几何变形作为碰撞。这种颠簸会产生一系列膨胀波,而不是压缩波,这些膨胀波会产生较小的阻力并改善所形成的空气动力学性能。本文的目的是减少整个飞行范围内的波浪阻力。通过使用这种方法,我们可以在整个飞行过程中比最近的方法更有效,因为如果有冲击,该区域会形成一个凸起,如果没有发生冲击,翼型的形状不会改变。

设计/方法/方法

在这个基于压力的模拟程序中,已经开发了使用并置有限体积公式求解 Navier-Stokes 方程的程序。为此,考虑使用任意拉格朗日-欧拉方法在跨音速流动中进行流体和结构模拟的高分辨率方案。为了模拟纳维-斯托克斯方程,使用了可压缩流动的大涡模拟模型。

发现

定义了一个新概念来减少跨音速流动阻力。为了减少阻力并提高翼型在跨音速流动中的性能,外壳在翼型表面的激波区域可以被认为是柔性的。这种方法是指在飞机机翼外壳中使用智能材料。

原创性/价值

该论文的价值在于开发一种新的方法来提高空气动力学性能并降低阻力,并在整个飞行过程中提高方法的效率。值得注意的是,新算法可以自动检测冲击区域;这一点在以前的研究中被忽视了。希望这项研究将为显着提高跨音速翼型性能打开一扇门。

更新日期:2021-06-23
down
wechat
bug