当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part D J. Automob. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cooperative control of yaw and roll motion for in-wheel motor vehicle with semi-active suspension
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ( IF 1.5 ) Pub Date : 2021-05-27 , DOI: 10.1177/09544070211020827
Fengjiao Jia 1 , Houhua Jing 1 , Zhiyuan Liu 1 , Mingqin Gu 2
Affiliation  

A new vehicle motion control strategy is proposed, which synthesizes the rolling and yaw performance of vehicle by cooperating the damping force of semi-active suspension and yaw moment. To address the coupled dynamic behavior of roll and yaw motion, the modeling approach for nonlinear roll and yaw coupled dynamics is firstly employed. Furthermore, considering that the yaw and roll controllers are located in different electronic control units in practice, a distributed structure of cooperative control is presented. The key of cooperative control is that the damping force of semi-active suspension is controlled to adjust the roll dynamic, the front- and rear-axle load transfer cooperating the yaw motion; the yaw stability controller is designed to improve the yaw dynamic performance. To design the suspension damping force controller, the effect of the suspension damping force on roll and yaw dynamic behavior is discussed, and the piecewise-linear damping-force model with drive current as input is established. Moreover, the optimal suspension drive current is designed to alter roll performance and load transfer. To enhance the yaw dynamic performance, the yaw stability controller based on a sliding mode method is explored, and the optimal sliding-surface parameter is discussed to synthesize the settling time and overshoot of the yaw rate. Simulation and hardware-in-loop (HIL) test results show that the cooperative control combines the roll and yaw dynamics performance well; the overshoot and oscillation of yaw rate and lateral speed can be restrained.



中文翻译:

半主动悬架轮毂机动车辆横摆和侧倾协同控制

提出了一种新的车辆运动控制策略,该策略通过半主动悬架阻尼力和横摆力矩的协同来综合车辆的侧倾和横摆性能。为了解决滚动和偏航运动的耦合动力学行为,首先采用非线性滚动和偏航耦合动力学建模方法。此外,考虑到偏航和滚转控制器在实践中位于不同的电子控制单元中,提出了一种分布式协同控制结构。协同控制的关键是通过控制半主动悬架的阻尼力来调节侧倾动态,前后桥载荷传递配合横摆运动;偏航稳定性控制器旨在提高偏航动态性能。设计悬架阻尼力控制器,讨论了悬架阻尼力对侧倾和偏航动力学行为的影响,建立了以驱动电流为输入的分段线性阻尼力模型。此外,最佳悬架驱动电流旨在改变侧倾性能和负载转移。为提高偏航动态性能,探索了基于滑模法的偏航稳定性控制器,讨论了最佳滑面参数,综合了偏航率的稳定时间和超调量。仿真和硬件在环(HIL)测试结果表明,协同控制很好地结合了侧倾和偏航动力学性能;可以抑制横摆率和横向速度的超调和振荡。建立了以驱动电流为输入的分段线性阻尼力模型。此外,最佳悬架驱动电流旨在改变侧倾性能和负载转移。为了提高横摆动力性能,研究了一种基于滑模方法的横摆稳定性控制器,并讨论了最佳的滑移面参数来合成横摆率的稳定时间和超调量。仿真和硬件在环(HIL)测试结果表明,协同控制很好地结合了侧倾和偏航动力学性能;可以抑制横摆率和横向速度的超调和振荡。建立了以驱动电流为输入的分段线性阻尼力模型。此外,最佳悬架驱动电流旨在改变侧倾性能和负载转移。为提高偏航动态性能,探索了基于滑模法的偏航稳定性控制器,讨论了最佳滑面参数,综合了偏航率的稳定时间和超调量。仿真和硬件在环(HIL)测试结果表明,协同控制很好地结合了侧倾和偏航动力学性能;可以抑制横摆率和横向速度的超调和振荡。探索了一种基于滑模法的偏航稳定控制器,并讨论了最佳的滑面参数,以综合建立时间和偏航率的超调量。仿真和硬件在环(HIL)测试结果表明,协同控制很好地结合了侧倾和偏航动力学性能;可以抑制横摆率和横向速度的超调和振荡。探索了基于滑模方法的偏航稳定性控制器,讨论了最佳滑面参数,综合了偏航率的稳定时间和超调量。仿真和硬件在环(HIL)测试结果表明,协同控制很好地结合了侧倾和偏航动力学性能;可以抑制横摆率和横向速度的超调和振荡。

更新日期:2021-05-28
down
wechat
bug