当前位置: X-MOL 学术J. Laser Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation and experiment of quenching process of 35CrMnSi by disk laser
Journal of Laser Applications ( IF 2.1 ) Pub Date : 2021-03-02 , DOI: 10.2351/7.0000227
Xing Han 1 , Chang Li 1 , Dacheng Zhang 1 , Yunfei Li 2 , Xing Gao 1
Affiliation  

It is extremely difficult to reveal the thermo-mechanical coupling evolution mechanism of the laser quenching process by traditional experimental methods. The numerical simulation provides an effective way to obtain the dynamic evolution information of multifield coupling in the quenching process. Based on comsol multiphysics, a thermo-mechanical coupling model of the 35CrMnSi laser quenching process by a disk laser was established. In the model, the thermophysical parameters of the matrix during the quenching process were calculated by the CALPHAD method. The transient changes of temperature, phase change, and thermal stress during quenching were obtained by solving the model, revealing the transient change law of temperature field and microstructure transformation of a 35CrMnSi laser under different process parameters. The formation and transformation degree of martensite were characterized by the depth and width of the quenched transformation hardening layer. Laser quenching experiments of 35CrMnSi were carried out with a TruDisk 4002 laser. The quenching structure and phase transformation hardening rule were observed by Axioskop 2 SEM, Zeiss-ΣIGMA HD FE-SEM, and HXS-1000A micro hardness tester. Experiments show that the influence zone of laser hardening of a disk laser shows Gauss distribution. The quenching layer consists of complete quenching phase transformation zone, incomplete quenching zone, and core matrix in turn from the surface to inside. In the complete quenched zone, dense and fine acicular martensite and a small amount of retained austenite are formed, and the hardened layer is Gaussian distribution. The phase transformation layer width and the phase transformation layer depth of workpiece 1-1# are 10 352.9891 and 1091.0945 μm, respectively. The phase transformation layer width and the phase transformation layer depth of workpiece 1-2# are 6592.3963 and 754.6135 μm, respectively. The phase transformation layer width and the phase transformation layer depth of workpiece 1-3# are 4361.7892 and 416.2139 μm, respectively. The experimental results are in good agreement with the simulation results, which verifies the validity of the thermo-mechanical coupling model and provides a theoretical basis for obtaining the optimized process parameters.

中文翻译:

盘式激光淬火35CrMnSi的数值模拟与实验

传统的实验方法很难揭示激光淬火过程的热机械耦合演化机制。数值模拟为获取淬火过程中多场耦合的动态演化信息提供了有效途径。基于comsol 多物理场, 建立了盘式激光器对 35CrMnSi 激光淬火过程的热-机械耦合模型。模型中采用CALPHAD方法计算了基体在淬火过程中的热物理参数。通过求解模型得到了淬火过程中温度、相变和热应力的瞬态变化,揭示了35CrMnSi激光器在不同工艺参数下的温度场和组织转变的瞬态变化规律。马氏体的形成和转变程度以淬火相变硬化层的深度和宽度来表征。35CrMnSi 的激光淬火实验使用 TruDisk 4002 激光器进行。通过Axioskop 2 SEM、Zeiss-ΣIGMA HD FE-SEM、和HXS-1000A显微硬度计。实验表明,盘式激光器的激光硬化影响区呈高斯分布。淬火层从表面到内部依次由完全淬火相变区、不完全淬火区和芯基体组成。在完全淬火区形成致密细小的针状马氏体和少量残余奥氏体,硬化层呈高斯分布。工件1-1#的相变层宽度和相变层深度分别为10 352.9891和1091.0945 和核心矩阵依次从表面到内部。在完全淬火区形成致密细小的针状马氏体和少量残余奥氏体,硬化层呈高斯分布。工件1-1#的相变层宽度和相变层深度分别为10 352.9891和1091.0945 和核心矩阵依次从表面到内部。在完全淬火区形成致密细小的针状马氏体和少量残余奥氏体,硬化层呈高斯分布。工件1-1#的相变层宽度和相变层深度分别为10 352.9891和1091.0945 μ米,分别。相变层的宽度和工件的相变层深度1-2#是6592.3963和754.6135  μ米,分别。相变层的宽度和工件的相变层深度1-3#是4361.7892和416.2139  μ米,分别。实验结果与仿真结果吻合较好,验证了热力耦合模型的有效性,为获得优化的工艺参数提供了理论依据。
更新日期:2021-03-02
down
wechat
bug