当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part D J. Automob. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Research on vehicle critical condition prediction and optimal yaw moment intervention based on nonlinear dynamics and Monte Carlo simulation
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ( IF 1.5 ) Pub Date : 2021-05-26 , DOI: 10.1177/09544070211020710
Li Yufang 1 , Lou Baichuan 1 , Ni Ming 1
Affiliation  

Timely and effective yaw moment intervention is required to suppress the instability tendency of vehicle under critical conditions, which is mainly caused by the overshoot of state parameters. As the development of vehicle nonlinear dynamics, the prediction of vehicle critical condition enables the vehicle to stabilize in this condition by timely yaw moment intervention. The yaw moment intervention law based on the prediction of critical conditions cannot be solely investigated by the initial motion states, since the online iterative optimization is an indispensable part in the predictive control. In this paper, the combination of threshold model, quadratic optimal yaw moment prediction method and Monte Carlo simulation provides a new approach to investigate the optimal open loop yaw moment intervention law based on initial motion states, which can be used to maintain the stability of vehicle plane motion in critical situations and optimize the predictive control method. Specifically, a total of 480,000 samples of quadratic yaw moment intervention parameters and corresponding system responses are obtained and analysed. It is certified that the optimized quadratic yaw moment can effectively suppress the overshoot of system responses. Specifically, statistics indicate that the initial value of yaw moment intervention plays an important role in preventing instability, but with the increase of speed and steering angle, the final yaw moment will be the decisive factor to maintain the lateral stability.



中文翻译:

基于非线性动力学和蒙特卡洛模拟的车辆临界状态预测与偏航力矩最优干预研究

需要及时有效的偏航力矩干预以抑制在关键条件下车辆的不稳定趋势,这主要是由于状态参数的超调引起的。随着车辆非线性动力学的发展,对车辆临界状态的预测使车辆能够通过及时的偏航力矩干预而稳定在这种状态下。由于在线迭代优化是预测控制中必不可少的部分,因此不能仅通过初始运动状态来研究基于临界条件预测的偏航力矩干预定律。本文结合阈值模型,二次最优偏航力矩预测方法和蒙特卡罗模拟方法,为研究基于初始运动状态的最优开环偏航力矩干预规律提供了一种新方法,它可用于在紧急情况下保持飞机平面运动的稳定性,并优化预测控制方法。具体而言,获得并分析了总共480,000个二次偏航力矩干预参数样本和相应的系统响应。经验证,优化的二次偏航力矩可以有效地抑制系统响应的过冲。具体而言,统计数据表明,偏航力矩干预的初始值在防止不稳定性方面起着重要作用,但是随着速度和转向角的增加,最终的偏航力矩将是保持横向稳定性的决定性因素。获得并分析了000个二次偏航力矩干预参数样本和相应的系统响应。经验证,优化的二次偏航力矩可以有效地抑制系统响应的过冲。具体而言,统计数据表明,偏航力矩干预的初始值在防止不稳定性方面起着重要作用,但是随着速度和转向角的增加,最终的偏航力矩将是保持横向稳定性的决定性因素。获得并分析了000个二次偏航力矩干预参数样本和相应的系统响应。经验证,优化的二次偏航力矩可以有效地抑制系统响应的过冲。具体而言,统计数据表明,偏航力矩干预的初始值在防止不稳定性方面起着重要作用,但是随着速度和转向角的增加,最终的偏航力矩将是保持横向稳定性的决定性因素。

更新日期:2021-05-27
down
wechat
bug