当前位置: X-MOL 学术Biotechnol. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing single-cell bioconversion efficiency by harnessing nanosecond pulsed electric field processing
Biotechnology Advances ( IF 16.0 ) Pub Date : 2021-05-26 , DOI: 10.1016/j.biotechadv.2021.107780
Iris Haberkorn 1 , Lya Siegenthaler 1 , Leandro Buchmann 2 , Lukas Neutsch 3 , Alexander Mathys 1
Affiliation  

Nanosecond pulsed electric field (nsPEF) processing is gaining momentum as a physical means for single-cell bioconversion efficiency enhancement. The technology allows biomass yields per substrate (YX/S) to be leveraged and poses a viable option for stimulating intracellular compound production. NsPEF processing thus resonates with myriad domains spanning the pharmaceutical and medical sectors, as well as food and feed production. The exact working mechanisms underlying nsPEF-based enhancement of bioconversion efficiency, however, remain elusive, and a better understanding would be pivotal for leveraging process control to broaden the application of nsPEF and scale -up industrial implementation. To bridge this gap, the study provides the electrotechnological and metabolic fundamentals underlying nsPEF processing in the bio-based domain to enable a critical evaluation of pathways underlying the enhancement of single-cell bioconversion efficiency. Evidence suggests that treating cells during rapid proliferating and thus the early to mid-exponential state of cellular growth is critical to promoting bioconversion efficiency. A combined effect of transient intracellular and sublethal stress induction and effects caused on the plasma membrane level result in an enhancement of cellular bioconversion efficiency. Congruency exists regarding the involvement of transient cytosolic Ca2+ hubs in nsPEF treatment responses, as well as that of reactive oxygen species formation culminating in the onset of cellular response pathways. A distinct assignment of single effects and their contributions to enhancing bioconversion efficiency, however, remains challenging. Current applications of nsPEF processing comprise microalgae, bacteria, and yeast biorefineries, but these endeavors are in their infancies with limitations associated with a lack of understanding of underlying treatment mechanisms and incomplete reporting and insufficient characterization and control of processing parameters.

The study aids in fostering the upsurge of nsPEF applications in the bio-based domain by providing a basis to gain a better understanding of cellular mechanisms underlying an nsPEF-based enhancement of cellular bioconversion efficiency and suggests best practice guidelines for nsPEF documentation for improved knowledge transfer. Better understanding and reporting of processes parameters and consequently improved process control could foster industrial-scale nsPEF realization and ultimately aid in perpetuating nsPEF applicability within the bio-based domain.



中文翻译:

通过利用纳秒脉冲电场处理提高单细胞生物转化效率

纳秒脉冲电场 (nsPEF) 处理作为一种提高单细胞生物转化效率的物理手段正在获得动力。该技术允许每个底物的生物质产量 (Y X/S) 被利用并为刺激细胞内化合物的产生提供了一个可行的选择。因此,NsPEF 加工与跨越制药和医疗部门以及食品和饲料生产的无数领域产生共鸣。然而,基于 nsPEF 的生物转化效率增强的确切工作机制仍然难以捉摸,更好地理解对于利用过程控制扩大 nsPEF 的应用和扩大工业实施至关重要。为了弥合这一差距,该研究提供了生物基领域 nsPEF 处理背后的电技术和代谢基础,以便对提高单细胞生物转化效率的途径进行关键评估。有证据表明,在细胞快速增殖期间处理细胞,因此细胞生长的早期至中期指数状态对于提高生物转化效率至关重要。瞬时细胞内和亚致死应激诱导以及对质膜水平的影响的综合作用导致细胞生物转化效率的提高。存在关于瞬时细胞溶质 Ca 参与的一致性nsPEF 治疗反应中的2+ 个中心,以及在细胞反应途径开始时达到高潮的活性氧形成中心。然而,单一效应的独特分配及其对提高生物转化效率的贡献仍然具有挑战性。nsPEF 处理的当前应用包括微藻、细菌和酵母生物精炼厂,但这些努力还处于起步阶段,由于缺乏对潜在处理机制的了解和不完整的报告以及对处理参数的表征和控制不足而存在局限性。

该研究通过提供一个基础来更好地了解基于 nsPEF 的细胞生物转化效率增强的细胞机制,有助于促进 nsPEF 在生物领域应用的热潮,并为 nsPEF 文档提供最佳实践指南以改进知识转移. 更好地理解和报告过程参数并因此改进过程控制可以促进工业规模的 nsPEF 实现,并最终有助于使 nsPEF 在生物基领域内的适用性永久化。

更新日期:2021-05-26
down
wechat
bug