当前位置: X-MOL 学术Fusion Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neutronics Analysis of the Stellarator-Type Fusion–Fission Hybrid Reactor Using Mesh Simplification
Fusion Science and Technology ( IF 0.9 ) Pub Date : 2021-05-26 , DOI: 10.1080/15361055.2021.1921363
Jin-Yang Li 1, 2, 3 , Sheng-Miao Guo 1, 3 , Long Gu 1, 3, 4 , You-Peng Zhang 5 , Hu-Shan Xu 1, 2, 3 , Da-Wei Wang 1, 4 , Rui Yu 1, 3 , Guan Wang 1, 3
Affiliation  

Abstract

The stellarator plasma device has been widely studied as one of the candidate solutions paralleling the ITER project, and its coupling with a fission blanket can bring benefits promoting the development of fusion technology with stable energy production simultaneously. However, the neutronics optimization design for the stellarator-type Fusion-Fission Hybrid Reactor (FFHR) is extremely complex since the helical structure with a large amount of spline curved surfaces cannot be exactly described in most of the Monte Carlo simulation processes, and the preliminary design stage has also been a time-consuming and error-prone task with the requirements frequently changing. In this context, the mesh-oriented optimized method has been considered for the parametric modeling analysis in order to get the ideal structure without redundant topologic information, and the corresponding conversion process from computer-aided design (CAD) to Monte Carlo simulation has been fulfilled by the CAD-PSFO code. Moreover, the liquid type of thorium-uranium fuels has been selected as the solutes dissolve in the molten salt blanket with its multilayer structure, where the burnup feature and neutronics properties have been analyzed and explained with the help of the OMCB code. The stellarator-type FFHR has been designed as a compact multifunctional device that can incinerate plutonium and transmute the minor actinide isotopes with tritium self-sufficiency and the high-energy multiplication factor.



中文翻译:

使用网格简化的仿星型聚变-裂变混合反应堆的中子学分析

摘要

仿星体等离子体装置作为与ITER项目并行的候选解决方案之一得到了广泛研究,其与裂变毯的耦合可以带来好处,同时促进聚变技术的发展,同时稳定地产生能量。然而,仿星型聚变裂变混合堆(FFHR)的中子学优化设计极其复杂,因为大多数蒙特卡罗模拟过程无法准确描述具有大量样条曲面的螺旋结构,初步设计阶段也是一项耗时且容易出错的任务,需求经常变化。在这种情况下,在参数化建模分析中考虑了面向网格的优化方法,以获得没有冗余拓扑信息的理想结构,并通过CAD完成了从计算机辅助设计(CAD)到蒙特卡罗模拟的相应转换过程。 PSFO 代码。此外,由于溶质溶解在具有多层结构的熔盐层中,因此选择了液态类型的钍铀燃料,其中在 OMCB 代码的帮助下分析和解释了燃耗特征和中子学特性。仿星器型 FFHR 被设计为一种紧凑的多功能装置,可以焚烧钚并利用氚自给自足和高能倍增因子嬗变微量锕系元素同位素。CAD-PSFO代码完成了从计算机辅助设计(CAD)到蒙特卡罗模拟的相应转换过程。此外,由于溶质溶解在具有多层结构的熔盐层中,因此选择了液态类型的钍铀燃料,其中在 OMCB 代码的帮助下分析和解释了燃耗特征和中子学特性。仿星器型 FFHR 被设计为一种紧凑的多功能装置,可以焚烧钚并利用氚自给自足和高能倍增因子嬗变微量锕系元素同位素。CAD-PSFO代码完成了从计算机辅助设计(CAD)到蒙特卡罗模拟的相应转换过程。此外,由于溶质溶解在具有多层结构的熔盐层中,因此选择了液态类型的钍铀燃料,其中在 OMCB 代码的帮助下分析和解释了燃耗特征和中子学特性。仿星器型 FFHR 被设计为一种紧凑的多功能装置,可以焚烧钚并利用氚自给自足和高能倍增因子嬗变微量锕系元素同位素。选择液态类型的钍铀燃料,因为溶质溶解在具有多层结构的熔盐层中,在 OMCB 代码的帮助下分析和解释了其燃耗特性和中子学特性。仿星器型 FFHR 被设计为一种紧凑的多功能装置,可以焚烧钚并利用氚自给自足和高能倍增因子嬗变微量锕系元素同位素。选择液态类型的钍铀燃料,因为溶质溶解在具有多层结构的熔盐层中,在 OMCB 代码的帮助下分析和解释了其燃耗特性和中子学特性。仿星器型 FFHR 被设计为一种紧凑的多功能装置,可以焚烧钚并利用氚自给自足和高能倍增因子嬗变微量锕系元素同位素。

更新日期:2021-05-26
down
wechat
bug