当前位置: X-MOL 学术Space Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation
Space Science Reviews ( IF 9.1 ) Pub Date : 2021-05-25 , DOI: 10.1007/s11214-021-00812-z
Rohit Bhartia , Luther W. Beegle , Lauren DeFlores , William Abbey , Joseph Razzell Hollis , Kyle Uckert , Brian Monacelli , Kenneth S. Edgett , Megan R. Kennedy , Margarite Sylvia , David Aldrich , Mark Anderson , Sanford A. Asher , Zachary Bailey , Kerry Boyd , Aaron S. Burton , Michael Caffrey , Michael J. Calaway , Robert Calvet , Bruce Cameron , Michael A. Caplinger , Brandi L. Carrier , Nataly Chen , Amy Chen , Matthew J. Clark , Samuel Clegg , Pamela G. Conrad , Moogega Cooper , Kristine N. Davis , Bethany Ehlmann , Linda Facto , Marc D. Fries , Dan H. Garrison , Denine Gasway , F. Tony Ghaemi , Trevor G. Graff , Kevin P. Hand , Cathleen Harris , Jeffrey D. Hein , Nicholas Heinz , Harrison Herzog , Eric Hochberg , Andrew Houck , William F. Hug , Elsa H. Jensen , Linda C. Kah , John Kennedy , Robert Krylo , Johnathan Lam , Mark Lindeman , Justin McGlown , John Michel , Ed Miller , Zachary Mills , Michelle E. Minitti , Fai Mok , James Moore , Kenneth H. Nealson , Anthony Nelson , Raymond Newell , Brian E. Nixon , Daniel A. Nordman , Danielle Nuding , Sonny Orellana , Michael Pauken , Glen Peterson , Randy Pollock , Heather Quinn , Claire Quinto , Michael A. Ravine , Ray D. Reid , Joe Riendeau , Amy J. Ross , Joshua Sackos , Jacob A. Schaffner , Mark Schwochert , Molly O Shelton , Rufus Simon , Caroline L. Smith , Pablo Sobron , Kimberly Steadman , Andrew Steele , Dave Thiessen , Vinh D. Tran , Tony Tsai , Michael Tuite , Eric Tung , Rami Wehbe , Rachel Weinberg , Ryan H. Weiner , Roger C. Wiens , Kenneth Williford , Chris Wollonciej , Yen-Hung Wu , R. Aileen Yingst , Jason Zan

The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is a robotic arm-mounted instrument on NASA’s Perseverance rover. SHERLOC has two primary boresights. The Spectroscopy boresight generates spatially resolved chemical maps using fluorescence and Raman spectroscopy coupled to microscopic images (10.1 μm/pixel). The second boresight is a Wide Angle Topographic Sensor for Operations and eNgineering (WATSON); a copy of the Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) that obtains color images from microscopic scales (∼13 μm/pixel) to infinity. SHERLOC Spectroscopy focuses a 40 μs pulsed deep UV neon-copper laser (248.6 nm), to a ∼100 μm spot on a target at a working distance of ∼48 mm. Fluorescence emissions from organics, and Raman scattered photons from organics and minerals, are spectrally resolved with a single diffractive grating spectrograph with a spectral range of 250 to ∼370 nm. Because the fluorescence and Raman regions are naturally separated with deep UV excitation (<250 nm), the Raman region ∼ 800 – 4000 cm−1 (250 to 273 nm) and the fluorescence region (274 to ∼370 nm) are acquired simultaneously without time gating or additional mechanisms. SHERLOC science begins by using an Autofocus Context Imager (ACI) to obtain target focus and acquire 10.1 μm/pixel greyscale images. Chemical maps of organic and mineral signatures are acquired by the orchestration of an internal scanning mirror that moves the focused laser spot across discrete points on the target surface where spectra are captured on the spectrometer detector. ACI images and chemical maps (< 100 μm/mapping pixel) will enable the first Mars in situ view of the spatial distribution and interaction between organics, minerals, and chemicals important to the assessment of potential biogenicity (containing CHNOPS). Single robotic arm placement chemical maps can cover areas up to 7x7 mm in area and, with the < 10 min acquisition time per map, larger mosaics are possible with arm movements. This microscopic view of the organic geochemistry of a target at the Perseverance field site, when combined with the other instruments, such as Mastcam-Z, PIXL, and SuperCam, will enable unprecedented analysis of geological materials for both scientific research and determination of which samples to collect and cache for Mars sample return.



中文翻译:

毅力的拉曼和发光扫描可居住环境,用于有机物和化学物质(SHERLOC)研究

利用拉曼光谱和发光技术扫描可居住的环境中的有机物和化学药品(SHERLOC)是基于NASA毅力的机械手臂安装式仪器流浪者。SHERLOC具有两个主要视轴。光谱视轴使用荧光和拉曼光谱与微观图像(10.1μm/像素)耦合生成空间分辨的化学图。第二个视轴是用于操作和工程的广角地形传感器(WATSON);火星科学实验室(MSL)火星手持镜头成像仪(MAHLI)的副本,该成像仪可​​从微观尺度(约13μm/像素)到无穷远获得彩色图像。SHERLOC光谱学将40μs脉冲深紫外氖铜激光器(248.6 nm)聚焦到目标上约100μm的光斑上,工作距离约为48 mm。来自有机物的荧光发射,以及来自有机物和矿物的拉曼散射光子,通过单个衍射光栅光谱仪在250至370 nm的光谱范围内进行光谱解析。同时获得-1(250至273 nm)和荧光区域(274至〜370 nm),而无需时间选通或其他机制。SHERLOC科学开始于使用自动对焦上下文成像器(ACI)获取目标焦点并获取10.1μm/像素的灰度图像。有机和矿物特征的化学图谱是通过内部扫描镜的编排获得的,该内部扫描镜将聚焦的激光光斑移动到目标表面上的离散点,在光谱仪检测器上捕获光谱。ACI图像和化学映射(<100微米/映射像素)将使第一火星原位有机物,矿物质和化学物质之间的空间分布和相互作用的观点,对于评估潜在的生物成因(含CHNOPS)很重要。单个机械臂放置化学图可以覆盖最大7x7 mm的区域,并且每张图的采集时间<10分钟,随着臂的移动,可能会出现较大的镶嵌图。一个目标的在有机地球化学的这种微观毅力场现场,当与其他工具,如MASTCAM-Z结合,PIXL,和SuperCam,将使前所未有地质材料的分析既科研和确定哪个样本收集并缓存以返回火星样本。

更新日期:2021-05-25
down
wechat
bug