当前位置: X-MOL 学术Sol. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A New View of the Solar Interface Region from the Interface Region Imaging Spectrograph (IRIS)
Solar Physics ( IF 2.7 ) Pub Date : 2021-05-25 , DOI: 10.1007/s11207-021-01826-0
Bart De Pontieu , Vanessa Polito , Viggo Hansteen , Paola Testa , Katharine K. Reeves , Patrick Antolin , Daniel Elias Nóbrega-Siverio , Adam F. Kowalski , Juan Martinez-Sykora , Mats Carlsson , Scott W. McIntosh , Wei Liu , Adrian Daw , Charles C. Kankelborg

The Interface Region Imaging Spectrograph (IRIS) has been obtaining near- and far-ultraviolet images and spectra of the solar atmosphere since July 2013. IRIS is the highest resolution observatory to provide seamless coverage of spectra and images from the photosphere into the low corona. The unique combination of near- and far-ultraviolet spectra and images at sub-arcsecond resolution and high cadence allows the tracing of mass and energy through the critical interface between the surface and the corona or solar wind. IRIS has enabled research into the fundamental physical processes thought to play a role in the low solar atmosphere such as ion–neutral interactions, magnetic reconnection, the generation, propagation, and dissipation of waves, the acceleration of non-thermal particles, and various small-scale instabilities. IRIS has provided insights into a wide range of phenomena including the discovery of non-thermal particles in coronal nano-flares, the formation and impact of spicules and other jets, resonant absorption and dissipation of Alfvénic waves, energy release and jet-like dynamics associated with braiding of magnetic-field lines, the role of turbulence and the tearing-mode instability in reconnection, the contribution of waves, turbulence, and non-thermal particles in the energy deposition during flares and smaller-scale events such as UV bursts, and the role of flux ropes and various other mechanisms in triggering and driving CMEs. IRIS observations have also been used to elucidate the physical mechanisms driving the solar irradiance that impacts Earth’s upper atmosphere, and the connections between solar and stellar physics. Advances in numerical modeling, inversion codes, and machine-learning techniques have played a key role. With the advent of exciting new instrumentation both on the ground, e.g. the Daniel K. Inouye Solar Telescope (DKIST) and the Atacama Large Millimeter/submillimeter Array (ALMA), and space-based, e.g. the Parker Solar Probe and the Solar Orbiter, we aim to review new insights based on IRIS observations or related modeling, and highlight some of the outstanding challenges.



中文翻译:

界面区域成像光谱仪(IRIS)对太阳界面区域的新观察

界面区成像光谱仪(IRIS)自2013年7月以来一直在获取太阳大气的近紫外图像和光谱。IRIS是最高分辨率的天文台,可无缝覆盖从光球层到低日冕的光谱和图像。在近亚弧分辨率和高节奏下,近紫外和远紫外光谱与图像的独特结合使得可以通过表面与日冕或太阳风之间的关键界面来跟踪质量和能量。IRIS使人们能够研究被认为在低太阳大气中起作用的基本物理过程,例如离子与中性相互作用,磁重联,波的产生,传播和消散,非热粒子的加速以及各种小粒子。规模的不稳定性。IRIS提供了对广泛现象的见解,包括发现冠状纳米耀斑中非热粒子,针状和其他射流的形成和影响,Alfvénic波的共振吸收和消散,能量释放以及与射流有关的动力学加上磁场线的编织,湍流和撕裂模式不稳定性在重新连接中的作用,耀斑和较小规模事件(例如紫外线爆发)中能量沉积中的波,湍流和非热粒子的贡献,以及磁通绳和其他各种机制在触发和驱动CME中的作用。IRIS的观测也已被用来阐明驱动太阳辐照度影响地球高层大气的物理机制,以及太阳与恒星物理之间的联系。数值建模,反演代码和机器学习技术的进步发挥了关键作用。随着令人兴奋的新仪器的问世,例如丹尼尔·K·因努耶(Daniel K. Inouye)太阳望远镜(DKIST)和阿塔卡马大毫米/亚毫米阵列(ALMA),以及基于太空的物体(例如派克太阳探测器太阳轨道器),我们旨在基于IRIS观测或相关模型来回顾新见解,并强调一些突出的挑战。

更新日期:2021-05-25
down
wechat
bug