当前位置: X-MOL 学术Bone Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The KDM4B–CCAR1–MED1 axis is a critical regulator of osteoclast differentiation and bone homeostasis
Bone Research ( IF 12.7 ) Pub Date : 2021-05-25 , DOI: 10.1038/s41413-021-00145-1
Sun-Ju Yi , You-Jee Jang , Hye-Jung Kim , Kyubin Lee , Hyerim Lee , Yeojin Kim , Junil Kim , Seon Young Hwang , Jin Sook Song , Hitoshi Okada , Jae-Il Park , Kyuho Kang , Kyunghwan Kim

Bone undergoes a constant and continuous remodeling process that is tightly regulated by the coordinated and sequential actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Recent studies have shown that histone demethylases are implicated in osteoblastogenesis; however, little is known about the role of histone demethylases in osteoclast formation. Here, we identified KDM4B as an epigenetic regulator of osteoclast differentiation. Knockdown of KDM4B significantly blocked the formation of tartrate-resistant acid phosphatase-positive multinucleated cells. Mice with myeloid-specific conditional knockout of KDM4B showed an osteopetrotic phenotype due to osteoclast deficiency. Biochemical analysis revealed that KDM4B physically and functionally associates with CCAR1 and MED1 in a complex. Using genome-wide chromatin immunoprecipitation (ChIP)-sequencing, we revealed that the KDM4B–CCAR1–MED1 complex is localized to the promoters of several osteoclast-related genes upon receptor activator of NF-κB ligand stimulation. We demonstrated that the KDM4B–CCAR1–MED1 signaling axis induces changes in chromatin structure (euchromatinization) near the promoters of osteoclast-related genes through H3K9 demethylation, leading to NF-κB p65 recruitment via a direct interaction between KDM4B and p65. Finally, small molecule inhibition of KDM4B activity impeded bone loss in an ovariectomized mouse model. Taken together, our findings establish KDM4B as a critical regulator of osteoclastogenesis, providing a potential therapeutic target for osteoporosis.



中文翻译:

KDM4B–CCAR1–MED1轴是破骨细胞分化和骨稳态的关键调节器

骨骼经历了持续不断的重塑过程,该过程受到吸收骨的破骨细胞和成骨性成骨细胞的协调和顺序作用的严格控制。最近的研究表明,组蛋白脱甲基酶与成骨细胞有关。然而,关于组蛋白脱甲基酶在破骨细胞形成中的作用知之甚少。在这里,我们确定KDM4B为破骨细胞分化的表观遗传调控因子。击倒KDM4B可以显着阻止抗酒石酸酸性磷酸酶阳性的多核细胞的形成。骨髓特异性条件性敲除KDM4B的小鼠由于破骨细胞缺乏而表现出骨质表型。生化分析表明,KDM4B在物理和功能上与CCAR1和MED1形成复合体。使用全基因组染色质免疫沉淀(ChIP)测序,我们发现KDM4B–CCAR1–MED1复合物在NF-κB配体的受体激活剂刺激下定位于几个破骨细胞相关基因的启动子。我们证明,KDM4B–CCAR1–MED1信号轴通过H3K9去甲基化诱导破骨细胞相关基因启动子附近的染色质结构变化(常染色质化),通过KDM4B和p65之间的直接相互作用导致NF-κBp65募集。最后,在卵巢切除的小鼠模型中,对KDM4B活性的小分子抑制作用阻止了骨丢失。综上所述,我们的发现将KDM4B确立为破骨细胞生成的关键调节剂,为骨质疏松症提供了潜在的治疗靶标。我们揭示了KDM4B–CCAR1–MED1复合物在NF-κB配体刺激受体激活剂后定位于几个破骨细胞相关基因的启动子。我们证明,KDM4B–CCAR1–MED1信号轴通过H3K9去甲基化诱导破骨细胞相关基因启动子附近的染色质结构变化(常染色质化),通过KDM4B和p65之间的直接相互作用导致NF-κBp65募集。最后,在卵巢切除的小鼠模型中,对KDM4B活性的小分子抑制作用可阻止骨丢失。综上所述,我们的发现将KDM4B确立为破骨细胞生成的关键调节剂,为骨质疏松症提供了潜在的治疗靶标。我们揭示了KDM4B–CCAR1–MED1复合物在NF-κB配体刺激受体激活剂后定位于几个破骨细胞相关基因的启动子。我们证明,KDM4B–CCAR1–MED1信号轴通过H3K9去甲基化诱导破骨细胞相关基因启动子附近的染色质结构变化(常染色质化),通过KDM4B和p65之间的直接相互作用导致NF-κBp65募集。最后,在卵巢切除的小鼠模型中,对KDM4B活性的小分子抑制作用阻止了骨丢失。综上所述,我们的发现将KDM4B确立为破骨细胞生成的关键调节剂,为骨质疏松症提供了潜在的治疗靶标。我们证明,KDM4B–CCAR1–MED1信号轴通过H3K9去甲基化诱导破骨细胞相关基因启动子附近的染色质结构变化(常染色质化),通过KDM4B和p65之间的直接相互作用导致NF-κBp65募集。最后,在卵巢切除的小鼠模型中,对KDM4B活性的小分子抑制作用阻止了骨丢失。综上所述,我们的发现将KDM4B确立为破骨细胞生成的关键调节剂,为骨质疏松症提供了潜在的治疗靶标。我们证明,KDM4B–CCAR1–MED1信号轴通过H3K9去甲基化诱导破骨细胞相关基因启动子附近的染色质结构变化(常染色质化),通过KDM4B和p65之间的直接相互作用导致NF-κBp65募集。最后,在卵巢切除的小鼠模型中,对KDM4B活性的小分子抑制作用阻止了骨丢失。综上所述,我们的发现将KDM4B确立为破骨细胞生成的关键调节剂,为骨质疏松症提供了潜在的治疗靶标。

更新日期:2021-05-25
down
wechat
bug