当前位置: X-MOL 学术Mech. Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced performance of airfoil-based piezoaeroelastic energy harvester: numerical simulation and experimental verification
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2021-05-25 , DOI: 10.1016/j.ymssp.2021.108065
Haigang Tian , Xiaobiao Shan , Han Cao , Tao Xie

This paper performs the detailed simulation analyses of airfoil-based piezoaeroelastic energy harvester with two degrees of freedom self-induced plunge-pitch motions, for exploring the flow field characteristic and enhancing the harvesting performance. The designing of the harvester for achieving flutter is first accomplished, finite element model is then built and simulation analyses are performed, and a prototype of the harvester system is finally fabricated. The obtained simulation results are in good agreement with the experimental and theoretical values. The effects of the key structural parameters of the harvester on flow field, aeroelastic vibration, and harvesting performance are numerically investigated. The results demonstrated that the structural parameters of the harvester determine primarily flutter onset of velocity, and consequently affect the dynamic behavior and harvesting performance. The harvester system takes place flutter and occurs limit cycle oscillations after flutter onset of velocity, which is suitable for harvesting energy. The smaller pitch structural stiffness coefficient and the more moderate both plunge stiffness and pitch damping coefficients are, the better aeroelastic vibration and output performance can be captured. A maximum output voltage of 29.08 V and output power of 3.382 mW can be harvested when the linear and cubic structural stiffness coefficients in pitch are 2.5 N·m and 100 N·m at 14 m/s, respectively, which corresponds to the power density of 21.138 mW/cm3 and demonstrates the superior harvesting performance over others. This work provides a significant guidance for designing the more efficient airfoil-based piezoaeroelastic energy harvester utilized in unmanned aerial vehicles.



中文翻译:

基于翼型的压电气动弹性能量采集器的增强性能:数值模拟和实验验证

本文对翼型压电气动弹性能量采集器进行了两个自由度自激式俯仰俯仰运动的详细仿真分析,以探索流场特性并提高采集性能。首先完成用于实现颤振的收割机的设计,然后建立有限元模型并进行仿真分析,最后制作出收割机系统的原型。仿真结果与实验值和理论值吻合良好。数值研究了收割机关键结构参数对流场,气动弹性振动和收割性能的影响。结果表明,收割机的结构参数主要决定速度的颤动发作,从而影响动态行为和收获性能。收集器系统发生颤振,并在速度颤振开始后发生极限循环振荡,这适合于收集能量。俯仰结构刚度系数越小,推力刚度和俯仰阻尼系数都越适中,则可以捕获到更好的气动弹性振动和输出性能。当螺距的线性和立方结构刚度系数在14 m / s时分别为2.5 N·m和100 N·m时,可以获得29.08 V的最大输出电压和3.382 mW的输出功率,这对应于功率密度21.138兆瓦/厘米 这适合于收集能量。俯仰结构刚度系数越小,推力刚度和俯仰阻尼系数都越适中,则可以捕获到更好的气动弹性振动和输出性能。当螺距的线性和立方结构刚度系数在14 m / s时分别为2.5 N·m和100 N·m时,可以获得29.08 V的最大输出电压和3.382 mW的输出功率,这对应于功率密度的21.138 mW / cm 这适合于收集能量。俯仰结构刚度系数越小,推力刚度和俯仰阻尼系数都越适中,则可以捕获到更好的气动弹性振动和输出性能。当螺距的线性和立方结构刚度系数在14 m / s时分别为2.5 N·m和100 N·m时,可以获得29.08 V的最大输出电压和3.382 mW的输出功率,这对应于功率密度的21.138 mW / cm图3展示了优于其他植物的收割性能。这项工作为设计用于无人机的更高效的翼型压电气动弹性能量收集器提供了重要指导。

更新日期:2021-05-25
down
wechat
bug