当前位置: X-MOL 学术Chem. Eng. Res. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Process intensification of thumba methyl ester (Biodiesel) production using hydrodynamic cavitation
Chemical Engineering Research and Design ( IF 3.9 ) Pub Date : 2021-05-21 , DOI: 10.1016/j.cherd.2021.05.007
Abhijeet Dilip Patil , Saroj Sundar Baral

The development of clean and sustainable biofuel generation from sustainable feedstock using an integrated process intensification approach like hydrodynamic cavitation (HC) is essential now. The current research is a 'first of its kind' where hydrodynamic cavitation is integrated with heterogeneous catalyst, i.e. TiO2, to prepare thumba methyl esters (TME). So far, no studies on biodiesel production using heterogeneous catalysts using HC are reported in the literature. Experiments were performed with an optimized orifice plate to investigate the effects of operating parameters viz., Thumba oil to methanol molar ratio (1:4–1:8), TiO2 concentration (1–1.4% by weight of oil), and operating temperature (50 °C to 70 °C). Maximum triglyceride conversion (71.8%) was obtained at thumba oil to methanol ratio of 1:6, TiO2 concentration of 1.2% weight percentage and operating temperature of 60 °C in hydrodynamic cavitation reactor within 1 h at 5 bar. The cavitational yield for HC was found to be 9.3 × 10−6 moles L/J, which was almost 27% higher than the value for the conventional approach (3.37 × 10−7 moles L/J). The experimental data fitted second-order reaction kinetics w.r.t limiting reactant, i.e., thumba oil and first-order w.r.t excess reactant, i.e., methanol. The pre-exponential factor (k0) and activation energy (E) of the alcoholysis reaction was found to be 82.26 L2 mol−2 min−1 and 15.44 kJ/mol, respectively. The thermodynamic analysis suggested that the alcoholysis of the thumba oil followed the endergonic reaction pathway. Thumba methyl ester (TME) synthesized via this intensified approach is a novel and energy-efficient method compared to the conventional method.



中文翻译:

使用流体动力空化技术强化拇指甲基酯(生物柴油)生产

使用水动力空化 (HC) 等综合过程强化方法,从可持续原料中开发清洁和可持续的生物燃料现在至关重要。目前的研究是“同类中的首创”,其中流体动力空化与非均相催化剂(即 TiO 2 )相结合,以制备拇指甲基酯 (TME)。到目前为止,文献中还没有关于使用 HC 的非均相催化剂生产生物柴油的研究。使用优化的孔板进行实验以研究操作参数的影响,即 Thumba 油与甲醇的摩尔比 (1:4–1:8)、TiO 2浓度(油重量的 1-1.4%)和工作温度(50 °C 至 70 °C)。最大甘油三酯转化率 (71.8%) 是在 1:6 的拇指油与甲醇比例、1.2% 重量百分比的TiO 2浓度和 60 °C 的操作温度下,在 5 bar压力下在 1 小时内在流体动力空化反应器中获得。发现 HC 的空化产率为 9.3 × 10 -6摩尔 L/J,比传统方法的值(3.37 × 10 -7摩尔 L/J)高出近 27% 。实验数据拟合了限制反应物(即拇指油)和一级反应物(即甲醇)的二级反应动力学。指数前因子 (k 0)和醇解反应的活化能(E)分别为82.26 L 2 mol -2 min -1和15.44 kJ/mol。热力学分析表明,图巴油的醇解遵循吸能反应途径。与传统方法相比,通过这种强化方法合成的拇指甲基酯 (TME) 是一种新颖且节能的方法。

更新日期:2021-05-28
down
wechat
bug