当前位置: X-MOL 学术Nucl. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of Buildup Region and Surface Dose: Comparison of Parallel Plane Ion Chamber, Treatment Planning System, and MC Simulation
Nuclear Technology ( IF 1.5 ) Pub Date : 2021-05-21 , DOI: 10.1080/00295450.2021.1895407
Taylan Tuğrul 1
Affiliation  

Abstract

In these days, Monte Carlo (MC) simulation is a method that can calculate the radiation dose that occurs in an environment in the most accurate way. The correct measurement of the dose occurring on the patient’s surface is of great importance to estimate the reactions that may occur on the patient’s skin. This importance encouraged us to do this study. The aim of this study is to determine buildup region and surface doses using MC simulation and to compare them with results of the parallel plane ion chamber and Treatment Planning System (TPS) measurements for 6-MV photon beams. Surface doses normalized to the maximum dose for the parallel plane ion chamber, MC simulation, fast photon (FP) algorithm, and collapsed cone convolution superposition (CC) algorithm are 13.6%, 30.28%, 0%, and 27.33%, respectively. The CC algorithm and parallel plane ion chamber measurements are compatible with MC simulation but the FP algorithm has calculated the dose less to a depth of 0.8 cm. Measuring the surface dose and the doses in the buildup region is of great importance in terms of accurately predicting the complications that may occur in the patient’s skin and taking precautions early. Using some methods and correction factors, the surface dose and the doses that may occur in the buildup region can be accurately calculated. It is recommended not to use the FP algorithm for stereotactic body radiation therapy and intensity-modulated radiation therapy treatments, as it cannot calculate doses correctly in the buildup region and surface.



中文翻译:

堆积区域和表面剂量的调查:平行平面离子室、治疗计划系统和 MC 模拟的比较

摘要

目前,蒙特卡洛 (MC) 模拟是一种可以最准确地计算环境中发生的辐射剂量的方法。正确测量发生在患者表面的剂量对于估计可能发生在患者皮肤上的反应非常重要。这种重要性鼓励我们进行这项研究。本研究的目的是使用 MC 模拟确定累积区域和表面剂量,并将它们与平行平面离子室和 6-MV 光子束的治疗计划系统 (TPS) 测量的结果进行比较。对于平行平面离子室、MC 模拟、快速光子 (FP) 算法和折叠锥卷积叠加 (CC) 算法,归一化为最大剂量的表面剂量分别为 13.6%、30.28%、0% 和 27.33%。CC 算法和平行平面离子室测量与 MC 模拟兼容,但 FP 算法计算的剂量小于 0.8 cm。测量表面剂量和堆积区域的剂量对于准确预测患者皮肤可能发生的并发症并及早采取预防措施具有重要意义。使用一些方法和校正因子,可以准确计算出表面剂量和堆积区可能出现的剂量。建议不要将 FP 算法用于立体定向放射治疗和调强放射治疗,因为它无法正确计算堆积区域和表面的剂量。测量表面剂量和堆积区域的剂量对于准确预测患者皮肤可能发生的并发症并及早采取预防措施具有重要意义。使用一些方法和校正因子,可以准确计算出表面剂量和堆积区可能出现的剂量。建议不要将 FP 算法用于立体定向放射治疗和调强放射治疗,因为它无法正确计算堆积区域和表面的剂量。测量表面剂量和堆积区域的剂量对于准确预测患者皮肤可能发生的并发症并及早采取预防措施具有重要意义。使用一些方法和校正因子,可以准确计算出表面剂量和堆积区可能出现的剂量。建议不要将 FP 算法用于立体定向放射治疗和调强放射治疗,因为它无法正确计算堆积区域和表面的剂量。可以准确计算表面剂量和可能出现在堆积区域的剂量。建议不要将 FP 算法用于立体定向放射治疗和调强放射治疗,因为它无法正确计算堆积区域和表面的剂量。可以准确计算表面剂量和可能出现在堆积区域的剂量。建议不要将 FP 算法用于立体定向放射治疗和调强放射治疗,因为它无法正确计算堆积区域和表面的剂量。

更新日期:2021-05-21
down
wechat
bug