当前位置: X-MOL 学术J. Materiomics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temperature-dependent deformation in silver-particle-covered copper nanowires by molecular dynamics simulation
Journal of Materiomics ( IF 8.4 ) Pub Date : 2021-05-21 , DOI: 10.1016/j.jmat.2021.05.005
Pengtao Li , Y.Q. Yang , Vladimir Koval , Xian Luo , Jianxin Chen , Wei Zhang , E. Emily Lin , Bowen Wang , Haixue Yan

Cu nanowires covered by Ag particles is studied for potential applications in the next-generation microelectronics. To date, the deformation mechanism in the Cusingle bondAg core-particle is not clear. Here, molecular dynamics simulation is used to describe the Cusingle bondAg core-particle system. The results show that the equilibrium structure of Ag particles is reconstructed, when the particle ≤1.0 nm. At low temperature (1 K) indicate that three different deformation processes take part in the core-particle structure, depending on the size of Ag particles. When the particle diameter ≤2.0 nm, the prevailing deformation mechanism is the emission of dislocations from the Cu surface. For the particle diameters ranging from 3.0 to 6.0 nm, the emission of misfit dislocations from the Agsingle bondCu interface is the dominant deformation mechanism. If the Ag particle ≥6.0 nm, the deformation mechanism can be characterized by the slip band, consisting of the dislocations and amorphous atoms. For elevated temperatures (2–400 K), the mechanical properties of the Agsingle bondCu core-shell system are nearly independent of temperature, whereas the structure with particles larger than 2.0 nm showed a strong dependence of its mechanical properties on temperature. Based on the results, the diameter-temperature plastic deformation map is proposed.



中文翻译:

通过分子动力学模拟银粒子覆盖的铜纳米线的温度相关变形

研究了被银颗粒覆盖的铜纳米线在下一代微电子中的潜在应用。迄今为止,Cu 单键Ag 核粒子的变形机制尚不清楚。在这里,分子动力学模拟用于描述 Cu 单键Ag 核粒子系统。结果表明,当颗粒≤1.0 nm时,Ag颗粒的平衡结构得到重建。在低温 (1 K) 下,根据 Ag 颗粒的大小,三种不同的变形过程参与了核-颗粒结构。当粒径≤2.0 nm 时,主要的变形机制是从Cu 表面发射位错。对于 3.0 到 6.0 nm 的粒径范围,Ag 的错配位错的发射单键Cu界面是主要的变形机制。如果银粒子≥6.0 nm,变形机制可以用滑移带来表征,滑移带由位错和非晶原子组成。对于升高的温度(2-400 K),Ag 单键Cu 核壳系统的机械性能几乎与温度无关,而颗粒大于 2.0 nm 的结构表现出其机械性能对温度的强烈依赖性。在此基础上,提出了直径-温度塑性变形图。

更新日期:2021-05-21
down
wechat
bug