当前位置: X-MOL 学术J. Spacecr. Rockets › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Space Environment Exposure Effects on Ceramic Coating for Thermal Protection Systems
Journal of Spacecraft and Rockets ( IF 1.3 ) Pub Date : 2021-05-21 , DOI: 10.2514/1.a34997
Roberto Pastore 1 , Andrea Delfini 1 , Fabio Santoni 1 , Mario Marchetti 1 , Marta Albano 2 , Fabrizio Piergentili 3 , Roberto Matassa 4
Affiliation  

Carbon/carbon (C/C) structures are widely considered for space thermal protection systems (TPSs), being able to withstand critical reentry conditions thanks to an excellent thermal stability. In low-Earth-orbit long-time missions, however, the TPS effectiveness is significantly lowered due to the surfaces’ prolonged staying within the harsh space environment. In particular, the detrimental oxidation due to thermal cycles and atomic oxygen (AtOx) exposure greatly affects the TPS integrity, thus leaving the spacecraft’s outer surface less protected during reentry. A great effort is thus made for testing solutions based on advanced coatings aimed at preserving TPS materials from oxidation. In the present work, ceramic coatings are evaluated by measurements of the thermal expansion coefficient and AtOx erosion rate. The specimens tested are C/C substrates on which commercial refractory varnishes are applied. Silicon carbide and aluminum and zirconium oxides are the basic ceramic constituents, and the effect of silica nanoparticles’ inclusion on the coating performances is also evaluated. A phenomenological modeling is then introduced to approach the relationship between erosion mechanism due to AtOx impact and surface energy variation induced by thermal cycles; such analysis highlights the importance of considering the combined action of different aging factors, in order to achieve a reliable interpretation of the space environment’s effect on spacecraft structures and subsystems.



中文翻译:

空间环境暴露对热防护系统陶瓷涂层的影响

碳/碳(C / C)结构被广泛用于空间热防护系统(TPS),由于其出色的热稳定性而能够承受关键的折返条件。但是,在低地球轨道的长期任务中,由于表面长时间停留在恶劣的太空环境中,TPS的有效性会大大降低。特别是,由于热循环和原子氧(AtOx)暴露而造成的有害氧化会极大地影响TPS的完整性,从而使航天器的外表面在重入过程中受到的保护较少。因此,为测试基于高级涂层的解决方案付出了巨大的努力,旨在防止TPS材料氧化。在目前的工作中,通过测量热膨胀系数和AtOx腐蚀速率来评估陶瓷涂层。所测试的样品是在其上施加了商用耐火漆的C / C基材。碳化硅,铝和锆的氧化物是基本的陶瓷成分,并且还评估了二氧化硅纳米颗粒的掺入对涂层性能的影响。然后引入一种现象学模型来研究AtOx冲击引起的腐蚀机理与热循环引起的表面能变化之间的关系。这样的分析突出了考虑不同衰老因素的综合作用的重要性,以便可靠地解释空间环境对航天器结构和子系统的影响。并评估了二氧化硅纳米粒子的掺入对涂层性能的影响。然后引入一种现象学模型来研究AtOx冲击引起的腐蚀机理与热循环引起的表面能变化之间的关系。这样的分析突出了考虑不同衰老因素的综合作用的重要性,以便可靠地解释空间环境对航天器结构和子系统的影响。并评估了二氧化硅纳米粒子的掺入对涂层性能的影响。然后引入一种现象学模型来研究AtOx冲击引起的腐蚀机理与热循环引起的表面能变化之间的关系。这样的分析突出了考虑不同衰老因素的综合作用的重要性,以便可靠地解释空间环境对航天器结构和子系统的影响。

更新日期:2021-05-22
down
wechat
bug