当前位置: X-MOL 学术Biogeosciences › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Methane oxidation in the waters of a humic-rich boreal lake stimulated by photosynthesis, nitrite, Fe(III) and humics
Biogeosciences ( IF 3.9 ) Pub Date : 2021-05-20 , DOI: 10.5194/bg-18-3087-2021
Sigrid van Grinsven , Kirsten Oswald , Bernhard Wehrli , Corinne Jegge , Jakob Zopfi , Moritz F. Lehmann , Carsten J. Schubert

Small boreal lakes are known to contribute significantly to global CH4 emissions. Lake Lovojärvi is a eutrophic lake in southern Finland with bottom water CH4 concentrations up to 2 mM. However, the surface water concentration, and thus the diffusive emission potential, was low (< 0.5 µM). We studied the biogeochemical processes involved in CH4 removal by chemical profiling and through incubation experiments. δ13C-CH4 profiling of the water column revealed a methane-oxidation hotspot just below the oxycline and zones of CH4 oxidation within the anoxic water column. In incubation experiments involving the addition of light and/or oxygen, CH4 oxidation rates in the anoxic hypolimnion were enhanced 3-fold, suggesting a major role for photosynthetically fueled aerobic CH4 oxidation. We observed a distinct peak in CH4 concentration at the chlorophyll-a maximum, caused by either in situ CH4 production or other CH4 inputs such as lateral transport from the littoral zone. In the dark anoxic water column at 7 m depth, nitrite seemed to be the key electron acceptor involved in CH4 oxidation, yet additions of Fe(III), anthraquinone-2,6-disulfonate and humic substances also stimulated anoxic CH4 oxidation. Surprisingly, nitrite seemed to inhibit CH4 oxidation at all other depths. Overall, this study shows that photosynthetically fueled CH4 oxidation can be a key process in CH4 removal in the water column of humic, turbid lakes, thereby limiting diffusive CH4 emissions from boreal lakes. Yet, it also highlights the potential importance of a whole suite of alternative electron acceptors, including humics, in these freshwater environments in the absence of light and oxygen.

中文翻译:

受光合作用,亚硝酸盐,Fe(III)和腐殖质刺激的富含腐殖质的北方湖泊水域中的甲烷氧化

众所周知,小型的北方湖泊是全球CH 4排放的重要来源。Lovojärvi湖是芬兰南部的富营养化湖泊,其底水CH 4浓度高达2  mM。但是,地表水的浓度很低,因此扩散势很低(<  0.5  µM)。我们研究了通过化学概况分析和温育实验去除CH 4的生物地球化学过程。δ 13 Ç - CH 4仿形水柱揭示了甲烷氧化热点只是的oxycline和区域下面CH 4在缺氧水柱内被氧化。在涉及添加光和/或氧的温育实验中,缺氧性水ion留中的CH 4氧化速率提高了3倍,这表明光合作用的需氧CH 4氧化具有重要作用 。我们观察到在具有明显的峰CH 4在叶绿素浓度最大,原位而导致的任何 CH 4生产或其他CH 4输入,诸如从沿海区域侧向传送。在深度为7 m的黑暗缺氧水柱中 ,亚硝酸盐似乎是参与CH 4的关键电子受体氧化,但添加Fe(III),蒽醌-2,6-二磺酸盐和腐殖质也刺激了缺氧CH 4氧化。出人意料的是,亚硝酸盐似乎在所有其他深度都抑制 CH 4氧化。总体而言,这项研究表明,光合作用的CH 4氧化可能是去除腐殖质浑浊湖泊水柱中CH 4的关键过程,从而限制了北方湖泊扩散CH 4的排放。然而,它也强调了在没有光和氧气的情况下,在这些淡水环境中,包括腐殖质在内的整套替代电子受体的潜在重要性。
更新日期:2021-05-20
down
wechat
bug