当前位置: X-MOL 学术J. Synchrotron Radiat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Millisecond timescale reactions observed via X-ray spectroscopy in a 3D microfabricated fused silica mixer
Journal of Synchrotron Radiation ( IF 2.4 ) Pub Date : 2021-05-19 , DOI: 10.1107/s1600577521003830
Diego A Huyke 1 , Ashwin Ramachandran 1 , Oscar Ramirez-Neri 2 , Jose A Guerrero-Cruz 2 , Leland B Gee 1 , Augustin Braun 1 , Dimosthenis Sokaras 3 , Brenda Garcia-Estrada 2 , Edward I Solomon 1 , Britt Hedman 3 , Mario U Delgado-Jaime 2 , Daniel P DePonte 4 , Thomas Kroll 3 , Juan G Santiago 1
Affiliation  

Determination of electronic structures during chemical reactions remains challenging in studies which involve reactions in the millisecond timescale, toxic chemicals, and/or anaerobic conditions. In this study, a three-dimensionally (3D) microfabricated microfluidic mixer platform that is compatible with time-resolved X-ray absorption and emission spectroscopy (XAS and XES, respectively) is presented. This platform, to initiate reactions and study their progression, mixes a high flow rate (0.50–1.5 ml min−1) sheath stream with a low-flow-rate (5–90 µl min−1) sample stream within a monolithic fused silica chip. The chip geometry enables hydrodynamic focusing of the sample stream in 3D and sample widths as small as 5 µm. The chip is also connected to a polyimide capillary downstream to enable sample stream deceleration, expansion, and X-ray detection. In this capillary, sample widths of 50 µm are demonstrated. Further, convection–diffusion-reaction models of the mixer are presented. The models are experimentally validated using confocal epifluorescence microscopy and XAS/XES measurements of a ferricyanide and ascorbic acid reaction. The models additionally enable prediction of the residence time and residence time uncertainty of reactive species as well as mixing times. Residence times (from initiation of mixing to the point of X-ray detection) during sample stream expansion as small as 2.1 ± 0.3 ms are also demonstrated. Importantly, an exploration of the mixer operational space reveals a theoretical minimum mixing time of 0.91 ms. The proposed platform is applicable to the determination of the electronic structure of conventionally inaccessible reaction intermediates.

中文翻译:

在 3D 微加工熔融石英混合器中通过 X 射线光谱观察到的毫秒级反应

在涉及毫秒时间尺度反应、有毒化学品和/或厌氧条件的研究中,确定化学反应过程中的电子结构仍然具有挑战性。在这项研究中,提出了一个三维 (3D) 微加工微流体混合器平台,该平台与时间分辨 X 射线吸收和发射光谱(分别为 XAS 和 XES)兼容。该平台用于启动反应并研究其进展,将高流速(0.50–1.5 ml min -1)鞘流与低流速(5–90 µl min -1) 单片熔融石英芯片内的样品流。芯片几何形状可实现样品流的 3D 流体动力学聚焦和小至 5 µm 的样品宽度。该芯片还连接到下游的聚酰亚胺毛细管,以实现样品流减速、膨胀和 X 射线检测。在此毛细管中,演示了 50 µm 的样品宽度。此外,还介绍了混合器的对流-扩散-反应模型。使用共聚焦落射荧光显微镜和铁氰化物和抗坏血酸反应的 XAS/XES 测量对模型进行了实验验证。该模型还能够预测活性物质的停留时间和停留时间不确定性以及混合时间。样品流膨胀期间的停留时间(从混合开始到 X 射线检测点)小至 2.1 ± 0。还演示了 3 毫秒。重要的是,对混合器操作空间的探索揭示了理论上的最小混合时间为 0.91 毫秒。所提出的平台适用于确定传统上难以接近的反应中间体的电子结构。
更新日期:2021-07-24
down
wechat
bug