当前位置: X-MOL 学术Bull. Lond. Math. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Corrigendum: An enhanced uncertainty principle for the Vaserstein distance
Bulletin of the London Mathematical Society ( IF 0.8 ) Pub Date : 2021-05-18 , DOI: 10.1112/blms.12521
Tom Carroll 1 , Xavier Massaneda 2 , Joaquim Ortega‐Cerdà 2
Affiliation  

One of the main results in the paper mentioned in the title is the following.

Theorem 1.Let Q 0 = [ 0 , 1 ] d be the unit cube in R d and let f : Q 0 R be a continuous function with zero mean. Let Z ( f ) be the nodal set Z ( f ) = { x Q : f ( x ) = 0 } . Let H d 1 ( Z ( f ) ) denote the ( d 1 ) -dimensional Hausdorff measure of Z ( f ) . Then

W 1 ( f + , f ) H d 1 ( Z ( f ) ) f f 1 2 1 / d f 1 . (1)

Here W 1 ( f + , f ) indicates the Vaserstein distance between the positive and negative parts of f.

The proof, which we now recall briefly, was based on a recursive selection, through a stopping time argument, of dyadic squares Q where either the mass of | f | is irrelevant, called empty, or Q f + is much larger than Q f (or the other way around), called unbalanced.

Assume, without loss of generality, that H d 1 ( Z ( f ) ) is finite and that f is normalized so that f 1 = 1 . Consider now the standard dyadic partition of the unit cube: first split Q 0 into 2 d subcubes of length 1 / 2 and then, recursively, split each of the new subcubes into 2 d “descendants” each with side length half that of the “parent”. A cube Q [ 0 , 1 ] d is balanced if
1 100 f V f + ( Q ) V f ( Q ) 100 f ,
where V indicates the volume and
V f + ( Q ) = V ( Q { f > 0 } ) and V f ( Q ) = V ( Q { f < 0 } ) .
On the other hand, Q is empty if Q | f | < V ( Q ) / 10 .
Recursively, at each generation we set aside the cubes Q i such that either:
  • (i) the cube Q i itself is empty;
  • (ii) one of the 2 d direct descendants Q i of Q i is full (non empty) and unbalanced. In this case, denote by Q i the full, unbalanced descendant of Q i for which Q i | f | is maximal.
This gives a decomposition
Q 0 = [ 0 , 1 ] d = i E Q i i F Q i R ,
where E and F indicate respectively the indices of the empty and full selected cubes, and where R is the remaining set (whatever has not been selected in the process above).
We proved (Proposition 2) that V ( R ) = 0 and that the full cubes Q i carry most of the mass, i.e. i F Q i | f | 9 / 10 , and next we claimed (Remark 1) that the corresponding descendants Q i , i F , still carry a significant part of that mass:
i F Q i | f | 9 10 × 2 d . (2)

Benjamin Jaye has kindly pointed out that this last estimate may in principle not be true in general, in that the mass in the full, unbalanced descendants Q i may not be comparable to the total mass of f in Q i – this mass may lie predominantly in the balanced descendants of Q i . He suggested circumventing this difficulty by constructing the cubes Q i by means of a continuous stopping time argument together with the Besicovitch covering theorem, replacing our original dyadic-based decomposition. With these new cubes, Propositions 3 and 4 remain valid, hence also the statement of Theorem 1. The dyadic decomposition used to prove Theorem 2 requires analogous modification. The result itself, as well as all other results, remains correct as stated.

Details of the modifications to the proof of Theorem 1 are as follows. The function f is extended by 0 from Q 0 to all of R d . The definitions of balanced and unbalanced cubes are modified so that a cube Q is balanced if
1 100 × 5 d f V f + ( Q ) V f ( Q ) 100 × 5 d f . (3)
The choice of the factor 5 d is in accordance with the constant appearing in the Besicovitch covering theorem (see below).
A similar adjustment is made to the definition of full and empty cubes, in that a cube Q is empty whenever
Q | f | 1 10 × 5 d V ( Q Q 0 ) .

For every x Q 0 such that f ( x ) 0 , there exists l ( x ) > 0 such that the open cube Q x centred at x and of side length l ( x ) = l ( Q x ) is simultaneously balanced and unbalanced in that either V f + ( Q ) / V f ( Q ) or V f ( Q ) / V f + ( Q ) equals 100 × 5 d f . This can be achieved by continuity, since for l very small the cube centred at x and of side length l is infinitely unbalanced, while for side length l = 2 it is balanced. Then there must be an intermediate side length l ( x ) for which one of the inequalities in (3) is actually an identity.

These cubes Q x cover Q 0 (up to at most a zero-measure set). According to the Besicovitch covering theorem [1, Theorem 18.1] (see also [2]), one can find 5 d sequences ( x i , j ) i 1 , j = 1 , , 5 d , such that for each j the cubes ( Q x i , j ) i 1 are pairwise disjoint and together still cover Q 0 :
Q 0 j = 1 5 d i 1 Q x i , j .
Since Q 0 | f | = 1 , there is at least one family of cubes ( Q x i , j ) i 1 such that
i 1 Q x i , j | f | 5 d .
From this particular sequence of cubes we select those that are full, and further relabel the cubes themselves as ( Q i ) i 1 . These cubes are thus disjoint and carry most of the mass, since
i : Q x i , j empty Q x i , j | f | 5 d 10 i : Q x i , j empty V ( Q x i , j Q 0 ) 5 d 10 .
In conclusion, estimate (2) holds for the cubes ( Q i ) i 1 , up to a change of constants. Lemma 1 follows as before with only minor modifications due to extending f by 0 to all of R d .

With the revised choice of the side length of the cubes Q i , both the estimates for the size of the zero set (Proposition 3) and for the Vaserstein distance (Proposition 4) hold for the new Q i , with the obvious modifications. The proof of Theorem 1 then concludes as before.

The proof of Theorem 2 follows similar arguments. One option is just to take in the existing proof the cells M j , l = φ l ( Q j ) , where the cubes Q j are now obtained as explained above. Another option is to use Nash's embedding theorem and consider the d-dimensional compact manifold M as isometrically embedded in R 2 d . Then the standard Besicovitch theorem in R 2 d yields a similar Besicovitch covering theorem for M (with constant 5 2 d instead of 5 d ).



中文翻译:

更正:Vaserstein 距离的增强不确定性原理

标题中提到的论文的主要结果之一如下。

定理 1. 0 = [ 0 , 1 ] d 是单位立方体 电阻 d 然后让 F 0 电阻 是一个均值为零的连续函数。让 Z ( F ) 成为节点集 Z ( F ) = { X F ( X ) = 0 } . 让 H d - 1 ( Z ( F ) ) 表示 ( d - 1 ) 维豪斯多夫测度 Z ( F ) . 然后

1 ( F + , F - ) H d - 1 ( Z ( F ) ) F F 1 2 - 1 / d F 1 . (1)

这里 1 ( F + , F - ) 表示正负部分之间的 Vaserstein 距离 F.

我们现在简要回顾一下这个证明,它基于通过停止时间参数对二元平方的递归选择 其中任一质量 | F | 无关紧要,称为,或 F + 远大于 F - (或相反),称为unbalanced

不失一般性,假设 H d - 1 ( Z ( F ) ) 是有限的并且 F 被归一化,使得 F 1 = 1 . 现在考虑单位立方体的标准二元划分:第一次分裂 0 进入 2 d 长度的子立方体 1 / 2 然后,递归地,将每个新的子立方体拆分为 2 d 每个“后代”的边长都是“父母”的一半。一个立方体 [ 0 , 1 ] d 平衡的,如果
1 100 F F + ( ) F - ( ) 100 F ,
在哪里 表示音量和
F + ( ) = ( { F > 0 } ) F - ( ) = ( { F < 0 } ) .
另一方面, 空的如果 | F | < ( ) / 10 .
递归地,在每一代我们都将立方体放在一边 一世 使得:
  • (i)立方体 一世 本身是空的;
  • (ii)其中之一 2 d 直系后代 一世 一世 已满(非空)且不平衡。在这种情况下,表示为 一世 完整的,不平衡的后代 一世 为此 一世 | F | 是最大的。
这给出了一个分解
0 = [ 0 , 1 ] d = 一世 一世 一世 F 一世 电阻 ,
在哪里 F 分别表示空的和完整的选定立方体的索引,其中 电阻 是剩余的集合(在上面的过程中没有选择的任何东西)。
我们证明了(命题 2) ( 电阻 ) = 0 和完整的立方体 一世 承载大部分质量,即 一世 F 一世 | F | 9 / 10 , 接下来我们声明 (Remark 1) 相应的后代 一世 , 一世 F ,仍然承载着该质量的很大一部分:
一世 F 一世 | F | 9 10 × 2 - d . (2)

Benjamin Jaye 善意地指出,最后的估计在原则上一般来说可能不正确,因为完整的、不平衡的后代的质量 一世 可能无法与总质量相比 F 一世 – 这种物质可能主要存在于平衡的后代中 一世 . 他建议通过构建立方体来规避这个困难 一世 通过连续停止时间参数和 Besicovitch 覆盖定理,取代了我们原来的基于二元的分解。有了这些新立方体,命题 3 和 4 仍然有效,因此定理 1 的陈述也是有效的。用于证明定理 2 的二进分解需要类似的修改。结果本身,以及所有其他结果,如所述保持正确。

对定理 1 证明的修改细节如下。功能 F 从 0 扩展 0 对所有 电阻 d . 修改了平衡和非平衡立方体的定义,以便立方体 平衡的,如果
1 100 × 5 d F F + ( ) F - ( ) 100 × 5 d F . (3)
因子的选择 5 d 符合 Besicovitch 覆盖定理中出现的常数(见下文)。
对满立方体和空立方体的定义进行了类似的调整,因为立方体 什么时候都是空的
| F | 1 10 × 5 d ( 0 ) .

对于每 X 0 以至于 F ( X ) 0 , 那里存在 ( X ) > 0 使得开放的立方体 X X 和边长 ( X ) = ( X ) 同时平衡和不平衡,因为要么 F + ( ) / F - ( ) 或者 F - ( ) / F + ( ) 等于 100 × 5 d F . 这可以通过连续性来实现,因为对于 以非常小的立方体为中心 X 和边长 是无限不平衡的,而对于边长 = 2 它是平衡的。那么一定有一个中间边长 ( X ) 其中(3)中的一个不等式实际上是一个恒等式。

这些立方体 X 覆盖 0 (最多一个零测量集)。根据 Besicovitch 覆盖定理 [ 1 , Theorem 18.1](另见 [ 2 ]),可以发现 5 d 序列 ( X 一世 , j ) 一世 1 , j = 1 , , 5 d ,这样对于每个 j 立方体 ( X 一世 , j ) 一世 1 成对不相交并且在一起仍然覆盖 0
0 j = 1 5 d 一世 1 X 一世 , j .
自从 0 | F | = 1 ,至少有一个立方体族 ( X 一世 , j ) 一世 1 以至于
一世 1 X 一世 , j | F | 5 - d .
从这个特定的立方体序列中,我们选择那些已满的立方体,并进一步将立方体本身重新标记为 ( 一世 ) 一世 1 . 这些立方体因此是不相交的并承载了大部分质量,因为
一世 X 一世 , j 空的 X 一世 , j | F | 5 - d 10 一世 X 一世 , j 空的 ( X 一世 , j 0 ) 5 - d 10 .
总之,估计(2)适用于立方体 ( 一世 ) 一世 1 ,直到常数的变化。引理 1 与以前一样,只是由于扩展而进行了微小的修改 F 由 0 到所有 电阻 d .

随着立方体边长的修正选择 一世 ,零集大小(命题 3)和 Vaserstein 距离(命题 4)的估计值都适用于新的 一世 ,有明显的修改。定理 1 的证明然后如前结束。

定理 2 的证明遵循类似的论证。一种选择是采用现有的证明细胞 j , = φ ( j ) ,其中立方体 j 现在获得如上所述。另一种选择是使用纳什嵌入定理并考虑 d维紧凑流形 作为等距嵌入 电阻 2 d . 那么标准的贝西科维奇定理 电阻 2 d 产生类似的贝西科维奇覆盖定理 (与常数 5 2 d 代替 5 d )。

更新日期:2021-05-18
down
wechat
bug